These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 29143057)

  • 1. Accelerating ion diffusion with unique three-dimensionally interconnected nanopores for self-membrane high-performance pseudocapacitors.
    Gao Y; Lin Y; Peng Z; Zhou Q; Fan Z
    Nanoscale; 2017 Nov; 9(46):18311-18317. PubMed ID: 29143057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional nanotube electrode arrays for hierarchical tubular structured high-performance pseudocapacitors.
    Gao Y; Lin Y; Chen J; Lin Q; Wu Y; Su W; Wang W; Fan Z
    Nanoscale; 2016 Jul; 8(27):13280-7. PubMed ID: 27337295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional metal/oxide nanocone arrays for high-performance electrochemical pseudocapacitors.
    Qiu Y; Zhao Y; Yang X; Li W; Wei Z; Xiao J; Leung SF; Lin Q; Wu H; Zhang Y; Fan Z; Yang S
    Nanoscale; 2014 Apr; 6(7):3626-31. PubMed ID: 24562413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile synthesis of three-dimensional structured carbon fiber-NiCo2O4-Ni(OH)2 high-performance electrode for pseudocapacitors.
    Li W; Xin L; Xu X; Liu Q; Zhang M; Ding S; Zhao M; Lou X
    Sci Rep; 2015 Mar; 5():9277. PubMed ID: 25787769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A General Electrode Design Strategy for Flexible Fiber Micro-Pseudocapacitors Combining Ultrahigh Energy and Power Delivery.
    Li P; Li J; Zhao Z; Fang Z; Yang M; Yuan Z; Zhang Y; Zhang Q; Hong W; Chen X; Yu D
    Adv Sci (Weinh); 2017 Aug; 4(8):1700003. PubMed ID: 28852617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-Dimensional Materials for High-Energy Solid-State Asymmetric Pseudocapacitors with High Mass Loadings.
    Chodankar NR; Patil SJ; Rama Raju GS; Lee DW; Dubal DP; Huh YS; Han YK
    ChemSusChem; 2020 Mar; 13(6):1582-1592. PubMed ID: 31654465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric Pseudocapacitors Based on Interfacial Engineering of Vanadium Nitride Hybrids.
    Su H; Xiong T; Tan Q; Yang F; Appadurai PBS; Afuwape AA; Balogun MJT; Huang Y; Guo K
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32531987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic effect of hierarchical nanostructured MoO2/Co(OH)2 with largely enhanced pseudocapacitor cyclability.
    Hercule KM; Wei Q; Khan AM; Zhao Y; Tian X; Mai L
    Nano Lett; 2013; 13(11):5685-91. PubMed ID: 24147641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NiCoP Nanoarray: A Superior Pseudocapacitor Electrode with High Areal Capacitance.
    Kong M; Wang Z; Wang W; Ma M; Liu D; Hao S; Kong R; Du G; Asiri AM; Yao Y; Sun X
    Chemistry; 2017 Mar; 23(18):4435-4441. PubMed ID: 28295716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogenated NiO nanoblock architecture for high performance pseudocapacitor.
    Singh AK; Sarkar D; Khan GG; Mandal K
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4684-92. PubMed ID: 24601472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis of graphite/PEDOT/MnO2 composites on commercial supercapacitor separator membranes as flexible and high-performance supercapacitor electrodes.
    Tang P; Han L; Zhang L
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10506-15. PubMed ID: 24905133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors.
    Moosavifard SE; El-Kady MF; Rahmanifar MS; Kaner RB; Mousavi MF
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4851-60. PubMed ID: 25671715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible and Freestanding Supercapacitor Electrodes Based on Nitrogen-Doped Carbon Networks/Graphene/Bacterial Cellulose with Ultrahigh Areal Capacitance.
    Ma L; Liu R; Niu H; Xing L; Liu L; Huang Y
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33608-33618. PubMed ID: 27960422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Generated Nanoporous Silver Framework for High-Performance Iron Oxide Pseudocapacitor Anodes.
    Seok JY; Lee J; Yang M
    ACS Appl Mater Interfaces; 2018 May; 10(20):17223-17231. PubMed ID: 29726257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading.
    Hu L; Chen W; Xie X; Liu N; Yang Y; Wu H; Yao Y; Pasta M; Alshareef HN; Cui Y
    ACS Nano; 2011 Nov; 5(11):8904-13. PubMed ID: 21923135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D MnO2-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors.
    Zhai T; Wang F; Yu M; Xie S; Liang C; Li C; Xiao F; Tang R; Wu Q; Lu X; Tong Y
    Nanoscale; 2013 Aug; 5(15):6790-6. PubMed ID: 23765341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical One-Dimensional Ammonium Nickel Phosphate Microrods for High-Performance Pseudocapacitors.
    Raju K; Ozoemena KI
    Sci Rep; 2015 Dec; 5():17629. PubMed ID: 26631578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Volumetric Energy Density Asymmetric Supercapacitors Based on Well-Balanced Graphene and Graphene-MnO
    Sheng L; Jiang L; Wei T; Fan Z
    Small; 2016 Oct; 12(37):5217-5227. PubMed ID: 27483052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large Areal Mass, Mechanically Tough and Freestanding Electrode Based on Heteroatom-doped Carbon Nanofibers for Flexible Supercapacitors.
    Liu R; Ma L; Mei J; Huang S; Yang S; Li E; Yuan G
    Chemistry; 2017 Feb; 23(11):2610-2618. PubMed ID: 28000323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.