These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29143288)

  • 1. GSK3β Controls mTOR and Prosurvival Signaling in Neurons.
    Urbanska M; Gozdz A; Macias M; Cymerman IA; Liszewska E; Kondratiuk I; Devijver H; Lechat B; Van Leuven F; Jaworski J
    Mol Neurobiol; 2018 Jul; 55(7):6050-6062. PubMed ID: 29143288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Akt and mTOR mediate programmed necrosis in neurons.
    Liu Q; Qiu J; Liang M; Golinski J; van Leyen K; Jung JE; You Z; Lo EH; Degterev A; Whalen MJ
    Cell Death Dis; 2014 Feb; 5(2):e1084. PubMed ID: 24577082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical regulation of glycogen synthase kinase 3β (GSK3β) in mesenchymal stem cells is dependent on Akt protein serine 473 phosphorylation via mTORC2 protein.
    Case N; Thomas J; Sen B; Styner M; Xie Z; Galior K; Rubin J
    J Biol Chem; 2011 Nov; 286(45):39450-6. PubMed ID: 21956113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GSK3β activity alleviates epileptogenesis and limits GluA1 phosphorylation.
    Urbanska M; Kazmierska-Grebowska P; Kowalczyk T; Caban B; Nader K; Pijet B; Kalita K; Gozdz A; Devijver H; Lechat B; Jaworski T; Grajkowska W; Sadowski K; Jozwiak S; Kotulska K; Konopacki J; Van Leuven F; van Vliet EA; Aronica E; Jaworski J
    EBioMedicine; 2019 Jan; 39():377-387. PubMed ID: 30502054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mTORC1 is necessary but mTORC2 and GSK3β are inhibitory for AKT3-induced axon regeneration in the central nervous system.
    Miao L; Yang L; Huang H; Liang F; Ling C; Hu Y
    Elife; 2016 Mar; 5():e14908. PubMed ID: 27026523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Akt-independent mTORC1 and GSK3β signaling in sublethal NMDA-induced injury and the recovery of neuronal electrophysiology and survival.
    Swiatkowski P; Nikolaeva I; Kumar G; Zucco A; Akum BF; Patel MV; D'Arcangelo G; Firestein BL
    Sci Rep; 2017 May; 7(1):1539. PubMed ID: 28484273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GSK-3 directly regulates phospho-4EBP1 in renal cell carcinoma cell-line: an intrinsic subcellular mechanism for resistance to mTORC1 inhibition.
    Ito H; Ichiyanagi O; Naito S; Bilim VN; Tomita Y; Kato T; Nagaoka A; Tsuchiya N
    BMC Cancer; 2016 Jul; 16():393. PubMed ID: 27387559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain-derived Neurotrophic Factor Promotes Growth of Neurons and Neural Stem Cells Possibly by Triggering the Phosphoinositide 3-Kinase/ AKT/Glycogen Synthase Kinase-3β/β-catenin Pathway.
    Li XT; Liang Z; Wang TT; Yang JW; Ma W; Deng SK; Wang XB; Dai YF; Guo JH; Li LY
    CNS Neurol Disord Drug Targets; 2017; 16(7):828-836. PubMed ID: 28524001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithium protects against methamphetamine-induced neurotoxicity in PC12 cells via Akt/GSK3β/mTOR pathway.
    Wu J; Zhu D; Zhang J; Li G; Liu Z; Sun J
    Biochem Biophys Res Commun; 2015 Sep; 465(3):368-73. PubMed ID: 26271595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of the Akt/GSK3beta signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats.
    Endo H; Nito C; Kamada H; Nishi T; Chan PH
    J Cereb Blood Flow Metab; 2006 Dec; 26(12):1479-89. PubMed ID: 16538228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LMO3 promotes gastric cancer cell invasion and proliferation through Akt-mTOR and Akt-GSK3β signaling.
    Qiu YS; Jiang NN; Zhou Y; Yu KY; Gong HY; Liao GJ
    Int J Mol Med; 2018 May; 41(5):2755-2763. PubMed ID: 29436606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seipin deletion in mice enhances phosphorylation and aggregation of tau protein through reduced neuronal PPARγ and insulin resistance.
    Chang H; Di T; Wang Y; Zeng X; Li G; Wan Q; Yu W; Chen L
    Neurobiol Dis; 2019 Jul; 127():350-361. PubMed ID: 30910747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Echinacoside, an Active Constituent of Cistanche Herba, Exerts a Neuroprotective Effect in a Kainic Acid Rat Model by Inhibiting Inflammatory Processes and Activating the Akt/GSK3β Pathway.
    Lu CW; Hsieh HL; Lin TY; Hsieh TY; Huang SK; Wang SJ
    Biol Pharm Bull; 2018 Nov; 41(11):1685-1693. PubMed ID: 30197410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathologic significance of AKT, mTOR, and GSK3β proteins in oral squamous cell carcinoma-affected patients.
    Matsuo FS; Andrade MF; Loyola AM; da Silva SJ; Silva MJB; Cardoso SV; de Faria PR
    Virchows Arch; 2018 Jun; 472(6):983-997. PubMed ID: 29713826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alteration of the Wnt/GSK3β/β‑catenin signalling pathway by rapamycin ameliorates pathology in an Alzheimer's disease model.
    Chen J; Long Z; Li Y; Luo M; Luo S; He G
    Int J Mol Med; 2019 Jul; 44(1):313-323. PubMed ID: 31115485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitotoxic glutamate causes neuronal insulin resistance by inhibiting insulin receptor/Akt/mTOR pathway.
    Pomytkin I; Krasil'nikova I; Bakaeva Z; Surin A; Pinelis V
    Mol Brain; 2019 Dec; 12(1):112. PubMed ID: 31856878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Akt/GSK3beta survival signaling is involved in acute brain injury after subarachnoid hemorrhage in rats.
    Endo H; Nito C; Kamada H; Yu F; Chan PH
    Stroke; 2006 Aug; 37(8):2140-6. PubMed ID: 16794215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithium Inhibits GSK3β Activity via Two Different Signaling Pathways in Neurons After Spinal Cord Injury.
    Li B; Ren J; Yang L; Li X; Sun G; Xia M
    Neurochem Res; 2018 Apr; 43(4):848-856. PubMed ID: 29404840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1.
    Guertin DA; Stevens DM; Thoreen CC; Burds AA; Kalaany NY; Moffat J; Brown M; Fitzgerald KJ; Sabatini DM
    Dev Cell; 2006 Dec; 11(6):859-71. PubMed ID: 17141160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aschantin targeting on the kinase domain of mammalian target of rapamycin suppresses epidermal growth factor-induced neoplastic cell transformation.
    Lee CJ; Jang JH; Lee JY; Lee MH; Li Y; Ryu HW; Choi KI; Dong Z; Lee HS; Oh SR; Surh YJ; Cho YY
    Carcinogenesis; 2015 Oct; 36(10):1223-34. PubMed ID: 26243309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.