These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
381 related articles for article (PubMed ID: 29143409)
1. Chronnectome fingerprinting: Identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns. Liu J; Liao X; Xia M; He Y Hum Brain Mapp; 2018 Feb; 39(2):902-915. PubMed ID: 29143409 [TBL] [Abstract][Full Text] [Related]
2. Individual differences and time-varying features of modular brain architecture. Liao X; Cao M; Xia M; He Y Neuroimage; 2017 May; 152():94-107. PubMed ID: 28242315 [TBL] [Abstract][Full Text] [Related]
3. The spatial chronnectome reveals a dynamic interplay between functional segregation and integration. Iraji A; Deramus TP; Lewis N; Yaesoubi M; Stephen JM; Erhardt E; Belger A; Ford JM; McEwen S; Mathalon DH; Mueller BA; Pearlson GD; Potkin SG; Preda A; Turner JA; Vaidya JG; van Erp TGM; Calhoun VD Hum Brain Mapp; 2019 Jul; 40(10):3058-3077. PubMed ID: 30884018 [TBL] [Abstract][Full Text] [Related]
4. Differentially categorized structural brain hubs are involved in different microstructural, functional, and cognitive characteristics and contribute to individual identification. Wang X; Lin Q; Xia M; He Y Hum Brain Mapp; 2018 Apr; 39(4):1647-1663. PubMed ID: 29314415 [TBL] [Abstract][Full Text] [Related]
5. Functional connectome fingerprinting: Identifying individuals and predicting cognitive functions via autoencoder. Cai B; Zhang G; Zhang A; Xiao L; Hu W; Stephen JM; Wilson TW; Calhoun VD; Wang YP Hum Brain Mapp; 2021 Jun; 42(9):2691-2705. PubMed ID: 33835637 [TBL] [Abstract][Full Text] [Related]
6. Dynamic functional connectivity of neurocognitive networks in children. Marusak HA; Calhoun VD; Brown S; Crespo LM; Sala-Hamrick K; Gotlib IH; Thomason ME Hum Brain Mapp; 2017 Jan; 38(1):97-108. PubMed ID: 27534733 [TBL] [Abstract][Full Text] [Related]
7. The spatial organization of the chronnectome associates with cortical hierarchy and transcriptional profiles in the human brain. Liu J; Xia M; Wang X; Liao X; He Y Neuroimage; 2020 Nov; 222():117296. PubMed ID: 32828922 [TBL] [Abstract][Full Text] [Related]
8. Intrinsic Brain Hub Connectivity Underlies Individual Differences in Spatial Working Memory. Liu J; Xia M; Dai Z; Wang X; Liao X; Bi Y; He Y Cereb Cortex; 2017 Dec; 27(12):5496-5508. PubMed ID: 28334075 [TBL] [Abstract][Full Text] [Related]
9. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Finn ES; Shen X; Scheinost D; Rosenberg MD; Huang J; Chun MM; Papademetris X; Constable RT Nat Neurosci; 2015 Nov; 18(11):1664-71. PubMed ID: 26457551 [TBL] [Abstract][Full Text] [Related]
10. Replicability of time-varying connectivity patterns in large resting state fMRI samples. Abrol A; Damaraju E; Miller RL; Stephen JM; Claus ED; Mayer AR; Calhoun VD Neuroimage; 2017 Dec; 163():160-176. PubMed ID: 28916181 [TBL] [Abstract][Full Text] [Related]
11. State-dependent variability of dynamic functional connectivity between frontoparietal and default networks relates to cognitive flexibility. Douw L; Wakeman DG; Tanaka N; Liu H; Stufflebeam SM Neuroscience; 2016 Dec; 339():12-21. PubMed ID: 27687802 [TBL] [Abstract][Full Text] [Related]
12. Dynamic functional connectivity analysis reveals decreased variability of the default-mode network in developing autistic brain. He C; Chen Y; Jian T; Chen H; Guo X; Wang J; Wu L; Chen H; Duan X Autism Res; 2018 Nov; 11(11):1479-1493. PubMed ID: 30270547 [TBL] [Abstract][Full Text] [Related]
13. Brain networks of the imaginative mind: Dynamic functional connectivity of default and cognitive control networks relates to openness to experience. Beaty RE; Chen Q; Christensen AP; Qiu J; Silvia PJ; Schacter DL Hum Brain Mapp; 2018 Feb; 39(2):811-821. PubMed ID: 29136310 [TBL] [Abstract][Full Text] [Related]
14. Increased cognitive complexity reveals abnormal brain network activity in individuals with corpus callosum dysgenesis. Hearne LJ; Dean RJ; Robinson GA; Richards LJ; Mattingley JB; Cocchi L Neuroimage Clin; 2019; 21():101595. PubMed ID: 30473430 [TBL] [Abstract][Full Text] [Related]
15. Test-retest reliability of dynamic functional connectivity in resting state fMRI. Zhang C; Baum SA; Adduru VR; Biswal BB; Michael AM Neuroimage; 2018 Dec; 183():907-918. PubMed ID: 30120987 [TBL] [Abstract][Full Text] [Related]
16. Contextual and Developmental Differences in the Neural Architecture of Cognitive Control. Petrican R; Grady CL J Neurosci; 2017 Aug; 37(32):7711-7726. PubMed ID: 28716967 [TBL] [Abstract][Full Text] [Related]
17. Functional Connectome from Phase Synchrony at Resting State is a Neural Fingerprint. Zhang R; Kranz GS; Lee TMC Brain Connect; 2019 Sep; 9(7):519-528. PubMed ID: 30997813 [TBL] [Abstract][Full Text] [Related]
18. Increased sensitivity to age-related differences in brain functional connectivity during continuous multiple object tracking compared to resting-state. Dørum ES; Kaufmann T; Alnæs D; Andreassen OA; Richard G; Kolskår KK; Nordvik JE; Westlye LT Neuroimage; 2017 Mar; 148():364-372. PubMed ID: 28111190 [TBL] [Abstract][Full Text] [Related]
19. Effects of task complexity and age-differences on task-related functional connectivity of attentional networks. O'Connell MA; Basak C Neuropsychologia; 2018 Jun; 114():50-64. PubMed ID: 29655800 [TBL] [Abstract][Full Text] [Related]
20. Brain fingerprinting and cognitive behavior predicting using functional connectome of high inter-subject variability. Lu J; Yan T; Yang L; Zhang X; Li J; Li D; Xiang J; Wang B Neuroimage; 2024 Jul; 295():120651. PubMed ID: 38788914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]