These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Combinatorial effect of nano whitlockite/nano bioglass with FGF-18 in an injectable hydrogel for craniofacial bone regeneration. Amirthalingam S; Lee SS; Pandian M; Ramu J; Iyer S; Hwang NS; Jayakumar R Biomater Sci; 2021 Apr; 9(7):2439-2453. PubMed ID: 33464240 [TBL] [Abstract][Full Text] [Related]
4. Addition of lactoferrin and substance P in a chitin/PLGA-CaSO Amirthalingam S; Lee SS; Rajendran AK; Kim I; Hwang NS; Rangasamy J Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112172. PubMed ID: 34082973 [TBL] [Abstract][Full Text] [Related]
5. A pilot study of conically graded chitosan-gelatin hydrogel/PLGA scaffold with dual-delivery of TGF-β1 and BMP-2 for regeneration of cartilage-bone interface. Han F; Zhou F; Yang X; Zhao J; Zhao Y; Yuan X J Biomed Mater Res B Appl Biomater; 2015 Oct; 103(7):1344-53. PubMed ID: 25385571 [TBL] [Abstract][Full Text] [Related]
6. In vivo bone formation following transplantation of human adipose-derived stromal cells that are not differentiated osteogenically. Jeon O; Rhie JW; Kwon IK; Kim JH; Kim BS; Lee SH Tissue Eng Part A; 2008 Aug; 14(8):1285-94. PubMed ID: 18593269 [TBL] [Abstract][Full Text] [Related]
7. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration. Aquino-Martínez R; Angelo AP; Pujol FV Stem Cell Res Ther; 2017 Nov; 8(1):265. PubMed ID: 29145866 [TBL] [Abstract][Full Text] [Related]
8. Injectable Chitin-Poly(ε-caprolactone)/Nanohydroxyapatite Composite Microgels Prepared by Simple Regeneration Technique for Bone Tissue Engineering. Arun Kumar R; Sivashanmugam A; Deepthi S; Iseki S; Chennazhi KP; Nair SV; Jayakumar R ACS Appl Mater Interfaces; 2015 May; 7(18):9399-409. PubMed ID: 25893690 [TBL] [Abstract][Full Text] [Related]
9. Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: an in vitro efficacy study. Chen SH; Wang XL; Xie XH; Zheng LZ; Yao D; Wang DP; Leng Y; Zhang G; Qin L Acta Biomater; 2012 Aug; 8(8):3128-37. PubMed ID: 22543006 [TBL] [Abstract][Full Text] [Related]
10. Dexamethasone Long-Term Controlled Release from Injectable Dual-Network Hydrogels with Porous Microspheres Immunomodulation Promotes Bone Regeneration. Xu W; Huang W; Cai X; Dang Z; Hao L; Wang L ACS Appl Mater Interfaces; 2024 Aug; 16(31):40581-40601. PubMed ID: 39074361 [TBL] [Abstract][Full Text] [Related]
11. Controlled release of simvastatin-loaded thermo-sensitive PLGA-PEG-PLGA hydrogel for bone tissue regeneration: in vitro and in vivo characteristics. Yan Q; Xiao LQ; Tan L; Sun W; Wu T; Chen LW; Mei Y; Shi B J Biomed Mater Res A; 2015 Nov; 103(11):3580-9. PubMed ID: 25969423 [TBL] [Abstract][Full Text] [Related]
12. Enhanced Skull Bone Regeneration by Sustained Release of BMP-2 in Interpenetrating Composite Hydrogels. Kim S; Kim J; Gajendiran M; Yoon M; Hwang MP; Wang Y; Kang BJ; Kim K Biomacromolecules; 2018 Nov; 19(11):4239-4249. PubMed ID: 30231204 [TBL] [Abstract][Full Text] [Related]
13. A Three-in-One Strategy: Injectable Biomimetic Porous Hydrogels for Accelerating Bone Regeneration via Shape-Adaptable Scaffolds, Controllable Magnesium Ion Release, and Enhanced Osteogenic Differentiation. Zhou H; Yu K; Jiang H; Deng R; Chu L; Cao Y; Zheng Y; Lu W; Deng Z; Liang B Biomacromolecules; 2021 Nov; 22(11):4552-4568. PubMed ID: 34590825 [TBL] [Abstract][Full Text] [Related]
14. Multivalent ion-based in situ gelling polysaccharide hydrogel as an injectable bone graft. Jung SW; Byun JH; Oh SH; Kim TH; Park JS; Rho GJ; Lee JH Carbohydr Polym; 2018 Jan; 180():216-225. PubMed ID: 29103499 [TBL] [Abstract][Full Text] [Related]
15. [A novel tissue-engineered bone constructed by using human adipose-derived stem cells and biomimetic calcium phosphate scaffold coprecipitated with bone morphogenetic protein-2]. Jiang WR; Zhang X; Liu YS; Wu G; Ge YJ; Zhou YS Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 49(1):6-15. PubMed ID: 28202997 [TBL] [Abstract][Full Text] [Related]
16. Fibrin-konjac glucomannan-black phosphorus hydrogel scaffolds loaded with nasal ectodermal mesenchymal stem cells accelerated alveolar bone regeneration. Zou Y; Mei X; Wang X; Zhang X; Wang X; Xiang W; Lu N BMC Oral Health; 2024 Aug; 24(1):878. PubMed ID: 39095803 [TBL] [Abstract][Full Text] [Related]
17. Enhanced osteogenic healing process of rat tooth sockets using a novel simvastatin-loaded injectable microsphere-hydrogel system. Li X; Liu X; Ni S; Liu Y; Sun H; Lin Q J Craniomaxillofac Surg; 2019 Jul; 47(7):1147-1154. PubMed ID: 31078372 [TBL] [Abstract][Full Text] [Related]
18. Customized Design 3D Printed PLGA/Calcium Sulfate Scaffold Enhances Mechanical and Biological Properties for Bone Regeneration. Liu T; Li Z; Zhao L; Chen Z; Lin Z; Li B; Feng Z; Jin P; Zhang J; Wu Z; Wu H; Xu X; Ye X; Zhang Y Front Bioeng Biotechnol; 2022; 10():874931. PubMed ID: 35814012 [TBL] [Abstract][Full Text] [Related]
19. Development of CaCO Gong Y; Zhang Y; Cao Z; Ye F; Lin Z; Li Y Biomater Sci; 2019 Aug; 7(9):3614-3626. PubMed ID: 31210206 [TBL] [Abstract][Full Text] [Related]
20. Tuning physical properties and BMP-2 release rates of injectable hydrogel systems for an optimal bone regeneration effect. Seo BB; Koh JT; Song SC Biomaterials; 2017 Apr; 122():91-104. PubMed ID: 28110173 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]