These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 29143902)

  • 1. A new aerobic chemolithoautotrophic arsenic oxidizing microorganism isolated from a high Andean watershed.
    Anguita JM; Rojas C; Pastén PA; Vargas IT
    Biodegradation; 2018 Feb; 29(1):59-69. PubMed ID: 29143902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand.
    Anderson CR; Cook GM
    Curr Microbiol; 2004 May; 48(5):341-7. PubMed ID: 15060729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic detoxification potential of aox genes in arsenite-oxidizing bacteria isolated from natural and constructed wetlands in the Republic of Korea.
    Chang JS; Yoon IH; Lee JH; Kim KR; An J; Kim KW
    Environ Geochem Health; 2010 Apr; 32(2):95-105. PubMed ID: 19548094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil.
    Zhang J; Zhou W; Liu B; He J; Shen Q; Zhao FJ
    Environ Sci Technol; 2015 May; 49(10):5956-64. PubMed ID: 25905768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan.
    Liao VH; Chu YJ; Su YC; Hsiao SY; Wei CC; Liu CW; Liao CM; Shen WC; Chang FJ
    J Contam Hydrol; 2011 Apr; 123(1-2):20-9. PubMed ID: 21216490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functions and Unique Diversity of Genes and Microorganisms Involved in Arsenite Oxidation from the Tailings of a Realgar Mine.
    Zeng XC; E G; Wang J; Wang N; Chen X; Mu Y; Li H; Yang Y; Liu Y; Wang Y
    Appl Environ Microbiol; 2016 Dec; 82(24):7019-7029. PubMed ID: 27663031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autotrophic microbial arsenotrophy in arsenic-rich soda lakes.
    Oremland RS; Saltikov CW; Stolz JF; Hollibaugh JT
    FEMS Microbiol Lett; 2017 Aug; 364(15):. PubMed ID: 28859313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation.
    Banerjee S; Datta S; Chattyopadhyay D; Sarkar P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(14):1736-47. PubMed ID: 22175878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial community succession during the enrichment of chemolithoautotrophic arsenite oxidizing bacteria at high arsenic concentrations.
    Le Nguyen A; Sato A; Inoue D; Sei K; Soda S; Ike M
    J Environ Sci (China); 2012; 24(12):2133-40. PubMed ID: 23534210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection, diversity and expression of aerobic bacterial arsenite oxidase genes.
    Inskeep WP; Macur RE; Hamamura N; Warelow TP; Ward SA; Santini JM
    Environ Microbiol; 2007 Apr; 9(4):934-43. PubMed ID: 17359265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of arsenite-oxidizing bacteria isolated from arsenic-contaminated groundwater of West Bengal.
    Paul D; Poddar S; Sar P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(13):1481-92. PubMed ID: 25137536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term performance of rapid oxidation of arsenite in simulated groundwater using a population of arsenite-oxidizing microorganisms in a bioreactor.
    Li H; Zeng XC; He Z; Chen X; E G; Han Y; Wang Y
    Water Res; 2016 Sep; 101():393-401. PubMed ID: 27288673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments.
    Hamamura N; Macur RE; Korf S; Ackerman G; Taylor WP; Kozubal M; Reysenbach AL; Inskeep WP
    Environ Microbiol; 2009 Feb; 11(2):421-31. PubMed ID: 19196273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of arsenite oxidation by Variovorax sp. MM-1 isolated from a soil and identification of arsenite oxidase gene.
    Bahar MM; Megharaj M; Naidu R
    J Hazard Mater; 2013 Nov; 262():997-1003. PubMed ID: 23290483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of arsenite-oxidizing bacteria from a natural biofilm associated to volcanic rocks of Atacama Desert, Chile.
    Campos VL; Escalante G; Yañez J; Zaror CA; Mondaca MA
    J Basic Microbiol; 2009 Sep; 49 Suppl 1():S93-7. PubMed ID: 19718679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China.
    Fan H; Su C; Wang Y; Yao J; Zhao K; Wang Y; Wang G
    J Appl Microbiol; 2008 Aug; 105(2):529-39. PubMed ID: 18397256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of arsenic on the biofilm formations of arsenite-oxidizing bacteria.
    Zeng XC; He Z; Chen X; Cao QAD; Li H; Wang Y
    Ecotoxicol Environ Saf; 2018 Dec; 165():1-10. PubMed ID: 30173020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic bioremediation potential of a new arsenite-oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil.
    Bahar MM; Megharaj M; Naidu R
    Biodegradation; 2012 Nov; 23(6):803-12. PubMed ID: 22760225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ecology of arsenic.
    Oremland RS; Stolz JF
    Science; 2003 May; 300(5621):939-44. PubMed ID: 12738852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Bacteria live on arsenic analysis of microbial arsenic metabolism--a review].
    Wang G; Huang Y; Li J
    Wei Sheng Wu Xue Bao; 2011 Feb; 51(2):154-60. PubMed ID: 21574375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.