These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 29143902)
21. The Arsenite Oxidation Potential of Native Microbial Communities from Arsenic-Rich Freshwaters. Fazi S; Crognale S; Casentini B; Amalfitano S; Lotti F; Rossetti S Microb Ecol; 2016 Jul; 72(1):25-35. PubMed ID: 27090902 [TBL] [Abstract][Full Text] [Related]
22. Arsenic biotransformation potential of microbial arsH responses in the biogeochemical cycling of arsenic-contaminated groundwater. Chang JS; Yoon IH; Kim KW Chemosphere; 2018 Jan; 191():729-737. PubMed ID: 29080535 [TBL] [Abstract][Full Text] [Related]
23. Effects of Arsenic and Iron on the Community and Abundance of Arsenite-Oxidizing Bacteria in an Arsenic-Affected Groundwater Aquifer. Pipattanajaroenkul P; Chotpantarat S; Termsaithong T; Sonthiphand P Curr Microbiol; 2021 Apr; 78(4):1324-1334. PubMed ID: 33638670 [TBL] [Abstract][Full Text] [Related]
25. Arsenite oxidation by a facultative chemolithoautotrophic Sinorhizobium sp. KGO-5 isolated from arsenic-contaminated soil. Dong D; Ohtsuka T; Dong DT; Amachi S Biosci Biotechnol Biochem; 2014; 78(11):1963-70. PubMed ID: 25051896 [TBL] [Abstract][Full Text] [Related]
26. Arsenic transformation and mobilization from minerals by the arsenite oxidizing strain WAO. Rhine ED; Onesios KM; Serfes ME; Reinfelder JR; Young LY Environ Sci Technol; 2008 Mar; 42(5):1423-9. PubMed ID: 18441783 [TBL] [Abstract][Full Text] [Related]
27. Arsenic redox transformation by Pseudomonas sp. HN-2 isolated from arsenic-contaminated soil in Hunan, China. Zhang Z; Yin N; Cai X; Wang Z; Cui Y J Environ Sci (China); 2016 Sep; 47():165-173. PubMed ID: 27593283 [TBL] [Abstract][Full Text] [Related]
28. Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production. Román-Ponce B; Ramos-Garza J; Arroyo-Herrera I; Maldonado-Hernández J; Bahena-Osorio Y; Vásquez-Murrieta MS; Wang ET Arch Microbiol; 2018 Aug; 200(6):883-895. PubMed ID: 29476206 [TBL] [Abstract][Full Text] [Related]
29. Biofilm formation of Ancylobacter sp. TS-1 on different granular materials and its ability for chemolithoautotrophic As(III)-oxidation at high concentrations. Leiva-Aravena E; Vera MA; Nerenberg R; Leiva ED; Vargas IT J Hazard Mater; 2022 Jan; 421():126733. PubMed ID: 34339991 [TBL] [Abstract][Full Text] [Related]
30. Detoxification of ars genotypes by arsenite-oxidizing bacteria through arsenic biotransformation. Chang JS; Kim HJ; Lee JH Environ Geochem Health; 2024 Oct; 46(11):470. PubMed ID: 39382695 [TBL] [Abstract][Full Text] [Related]
31. Enhanced Detoxification of Arsenic Under Carbon Starvation: A New Insight into Microbial Arsenic Physiology. Nandre VS; Bachate SP; Salunkhe RC; Bagade AV; Shouche YS; Kodam KM Curr Microbiol; 2017 May; 74(5):614-622. PubMed ID: 28280926 [TBL] [Abstract][Full Text] [Related]
32. Removal of arsenic from groundwater by arsenite-oxidizing bacteria. Ike M; Miyazaki T; Yamamoto N; Sei K; Soda S Water Sci Technol; 2008; 58(5):1095-100. PubMed ID: 18824809 [TBL] [Abstract][Full Text] [Related]
33. The ars genotype characterization of arsenic-resistant bacteria from arsenic-contaminated gold-silver mines in the Republic of Korea. Chang JS; Kim YH; Kim KW Appl Microbiol Biotechnol; 2008 Aug; 80(1):155-65. PubMed ID: 18560832 [TBL] [Abstract][Full Text] [Related]
34. A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Santini JM; Sly LI; Schnagl RD; Macy JM Appl Environ Microbiol; 2000 Jan; 66(1):92-7. PubMed ID: 10618208 [TBL] [Abstract][Full Text] [Related]
35. Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics. Cavalca L; Zanchi R; Corsini A; Colombo M; Romagnoli C; Canzi E; Andreoni V Syst Appl Microbiol; 2010 Apr; 33(3):154-64. PubMed ID: 20303688 [TBL] [Abstract][Full Text] [Related]
36. Phylogenetic and phenotypic analyses of arsenic-reducing bacteria isolated from an old tin mine area in Thailand. Jareonmit P; Mehta M; Sadowsky MJ; Sajjaphan K World J Microbiol Biotechnol; 2012 May; 28(5):2287-92. PubMed ID: 22806053 [TBL] [Abstract][Full Text] [Related]
37. A new role for sulfur in arsenic cycling. Fisher JC; Wallschläger D; Planer-Friedrich B; Hollibaugh JT Environ Sci Technol; 2008 Jan; 42(1):81-5. PubMed ID: 18350879 [TBL] [Abstract][Full Text] [Related]
38. Redox cycling of arsenic by the hydrothermal marine bacterium Marinobacter santoriniensis. Handley KM; Héry M; Lloyd JR Environ Microbiol; 2009 Jun; 11(6):1601-11. PubMed ID: 19226300 [TBL] [Abstract][Full Text] [Related]
39. Bacterial aox genotype from arsenic contaminated mine to adjacent coastal sediment: evidences for potential biogeochemical arsenic oxidation. Chang JS; Lee JH; Kim IS J Hazard Mater; 2011 Oct; 193():233-42. PubMed ID: 21864978 [TBL] [Abstract][Full Text] [Related]
40. Removal of arsenic from groundwater by using a native isolated arsenite-oxidizing bacterium. Kao AC; Chu YJ; Hsu FL; Liao VH J Contam Hydrol; 2013 Dec; 155():1-8. PubMed ID: 24096199 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]