These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 29144021)
21. Primary metabolism of chickpea is the initial target of wound inducing early sensed Fusarium oxysporum f. sp. ciceri race I. Gupta S; Chakraborti D; Sengupta A; Basu D; Das S PLoS One; 2010 Feb; 5(2):e9030. PubMed ID: 20140256 [TBL] [Abstract][Full Text] [Related]
24. Quantitative and microscopic assessment of compatible and incompatible interactions between chickpea cultivars and Fusarium oxysporum f. sp. ciceris races. Jiménez-Fernández D; Landa BB; Kang S; Jiménez-Díaz RM; Navas-Cortés JA PLoS One; 2013; 8(4):e61360. PubMed ID: 23613839 [TBL] [Abstract][Full Text] [Related]
25. Fusarium oxysporum mediates systems metabolic reprogramming of chickpea roots as revealed by a combination of proteomics and metabolomics. Kumar Y; Zhang L; Panigrahi P; Dholakia BB; Dewangan V; Chavan SG; Kunjir SM; Wu X; Li N; Rajmohanan PR; Kadoo NY; Giri AP; Tang H; Gupta VS Plant Biotechnol J; 2016 Jul; 14(7):1589-603. PubMed ID: 26801007 [TBL] [Abstract][Full Text] [Related]
26. Chitosan thiamine nanoparticles intervene innate immunomodulation during Chickpea-Fusarium interaction. Sathiyabama M; Indhumathi M Int J Biol Macromol; 2022 Feb; 198():11-17. PubMed ID: 34963622 [TBL] [Abstract][Full Text] [Related]
27. [Differential gene expression in incompatible interaction between Lilium regale Wilson and Fusarium oxysporum f. sp. lilii revealed by combined SSH and microarray analysis]. Rao J; Liu D; Zhang N; He H; Ge F; Chen C Mol Biol (Mosk); 2014; 48(6):915-26. PubMed ID: 25845232 [TBL] [Abstract][Full Text] [Related]
28. A highly efficient Agrobacterium mediated transformation system for chickpea wilt pathogen Fusarium oxysporum f. sp. ciceri using DsRed-Express to follow root colonisation. Islam MN; Nizam S; Verma PK Microbiol Res; 2012 Jun; 167(6):332-8. PubMed ID: 22397973 [TBL] [Abstract][Full Text] [Related]
29. Extracellular matrix proteome of chickpea (Cicer arietinum L.) illustrates pathway abundance, novel protein functions and evolutionary perspect. Bhushan D; Pandey A; Chattopadhyay A; Choudhary MK; Chakraborty S; Datta A; Chakraborty N J Proteome Res; 2006 Jul; 5(7):1711-20. PubMed ID: 16823979 [TBL] [Abstract][Full Text] [Related]
30. Host-Pathogen Interaction in Fusarium oxysporum Infections: Where Do We Stand? Husaini AM; Sakina A; Cambay SR Mol Plant Microbe Interact; 2018 Sep; 31(9):889-898. PubMed ID: 29547356 [TBL] [Abstract][Full Text] [Related]
31. Comparative proteome analysis of the strawberry-Fusarium oxysporum f. sp. fragariae pathosystem reveals early activation of defense responses as a crucial determinant of host resistance. Fang X; Jost R; Finnegan PM; Barbetti MJ J Proteome Res; 2013 Apr; 12(4):1772-88. PubMed ID: 23495785 [TBL] [Abstract][Full Text] [Related]
32. Comparative analyses of genotype dependent expressed sequence tags and stress-responsive transcriptome of chickpea wilt illustrate predicted and unexpected genes and novel regulators of plant immunity. Ashraf N; Ghai D; Barman P; Basu S; Gangisetty N; Mandal MK; Chakraborty N; Datta A; Chakraborty S BMC Genomics; 2009 Sep; 10():415. PubMed ID: 19732460 [TBL] [Abstract][Full Text] [Related]
33. Genetic characterization and virulence of Fusarium spp. isolated from chickpea. Aydın MH; İnal B Cell Mol Biol (Noisy-le-grand); 2019 Jan; 65(1):56-60. PubMed ID: 30782295 [TBL] [Abstract][Full Text] [Related]
34. Evaluation of the significance of cell wall polymers in flax infected with a pathogenic strain of Fusarium oxysporum. Wojtasik W; Kulma A; Dymińska L; Hanuza J; Czemplik M; Szopa J BMC Plant Biol; 2016 Mar; 16():75. PubMed ID: 27005923 [TBL] [Abstract][Full Text] [Related]
35. Effect of genotype and root colonization in biological control of fusarium wilts in pigeonpea and chickpea by Pseudomonas aeruginosa PNA1. Anjaiah V; Cornelis P; Koedam N Can J Microbiol; 2003 Feb; 49(2):85-91. PubMed ID: 12718396 [TBL] [Abstract][Full Text] [Related]
36. Development of chickpea near-isogenic lines for Fusarium wilt. Castro P; Pistón F; Madrid E; Millán T; Gil J; Rubio J Theor Appl Genet; 2010 Nov; 121(8):1519-26. PubMed ID: 20652529 [TBL] [Abstract][Full Text] [Related]
37. In search of decoy/guardee to R genes: deciphering the role of sugars in defense against Fusarium wilt in chickpea. Gupta S; Chakraborti D; Basu D; Das S Plant Signal Behav; 2010 Sep; 5(9):1081-7. PubMed ID: 20855953 [TBL] [Abstract][Full Text] [Related]
38. Transcriptomic dissection reveals wide spread differential expression in chickpea during early time points of Fusarium oxysporum f. sp. ciceri Race 1 attack. Gupta S; Bhar A; Chatterjee M; Ghosh A; Das S PLoS One; 2017; 12(5):e0178164. PubMed ID: 28542579 [TBL] [Abstract][Full Text] [Related]
39. Development of Loop-Mediated Isothermal Amplification (LAMP) assay for rapid detection of Fusarium oxysporum f. sp. ciceris - wilt pathogen of chickpea. Ghosh R; Nagavardhini A; Sengupta A; Sharma M BMC Res Notes; 2015 Feb; 8():40. PubMed ID: 25886622 [TBL] [Abstract][Full Text] [Related]
40. Marker Assisted Selection (MAS) for chickpea Fusarium oxysporum wilt resistant genotypes using PCR based molecular markers. Ahmad Z; Mumtaz AS; Ghafoor A; Ali A; Nisar M Mol Biol Rep; 2014 Oct; 41(10):6755-62. PubMed ID: 25017202 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]