BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 29144425)

  • 1. Selective Laser Sintering of Porous Silica Enabled by Carbon Additive.
    Chang S; Li L; Lu L; Fuh JYH
    Materials (Basel); 2017 Nov; 10(11):. PubMed ID: 29144425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-ceramic bond strength of a cobalt chromium alloy for dental prosthetic restorations with a porous structure using metal 3D printing.
    Wang H; Lim JY
    Comput Biol Med; 2019 Sep; 112():103364. PubMed ID: 31369941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering.
    Seitz H; Rieder W; Irsen S; Leukers B; Tille C
    J Biomed Mater Res B Appl Biomater; 2005 Aug; 74(2):782-8. PubMed ID: 15981173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective laser sintering (SLS) 3D printing of medicines.
    Fina F; Goyanes A; Gaisford S; Basit AW
    Int J Pharm; 2017 Aug; 529(1-2):285-293. PubMed ID: 28668582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and validation of a low-cost polymer selective laser sintering machine.
    Mapley M; Lu Y; Gregory SD; Pauls JP; Tansley G; Busch A
    HardwareX; 2020 Oct; 8():e00119. PubMed ID: 35498255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing.
    Shirazi SF; Gharehkhani S; Mehrali M; Yarmand H; Metselaar HS; Adib Kadri N; Osman NA
    Sci Technol Adv Mater; 2015 Jun; 16(3):033502. PubMed ID: 27877783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the Feasibility of Processing Activated Carbon/UHMWPE Polymer Composite Using Laser Powder Bed Fusion.
    Khalil Y; Hopkinson N; Kowalski AJ; Fairclough JPA
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabricating 3D printed orally disintegrating printlets using selective laser sintering.
    Fina F; Madla CM; Goyanes A; Zhang J; Gaisford S; Basit AW
    Int J Pharm; 2018 Apr; 541(1-2):101-107. PubMed ID: 29454028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and fabrication of cast orthopedic implants with freeform surface textures from 3-D printed ceramic shell.
    Curodeau A; Sachs E; Caldarise S
    J Biomed Mater Res; 2000 Sep; 53(5):525-35. PubMed ID: 10984701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective Laser Sintering of Metal-Organic Frameworks: Production of Highly Porous Filters by 3D Printing onto a Polymeric Matrix.
    Lahtinen E; Precker RLM; Lahtinen M; Hey-Hawkins E; Haukka M
    Chempluschem; 2019 Feb; 84(2):222-225. PubMed ID: 31950695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Process Phenomena and Material Properties in Selective Laser Sintering of Polymers: A Review.
    Lupone F; Padovano E; Casamento F; Badini C
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioactive Ceramic Scaffolds for Bone Tissue Engineering by Powder Bed Selective Laser Processing: A Review.
    Kamboj N; Ressler A; Hussainova I
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D/4D Printing of Polymers: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography (SLA).
    Kafle A; Luis E; Silwal R; Pan HM; Shrestha PL; Bastola AK
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a solvent-free polylactide/calcium carbonate composite for selective laser sintering of bone tissue engineering scaffolds.
    Gayer C; Ritter J; Bullemer M; Grom S; Jauer L; Meiners W; Pfister A; Reinauer F; Vučak M; Wissenbach K; Fischer H; Poprawe R; Schleifenbaum JH
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():660-673. PubMed ID: 31029360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Roughness and Grain Size Variation When 3D Printing Polyamide 11 Parts Using Selective Laser Sintering.
    Tonello R; Conradsen K; Pedersen DB; Frisvad JR
    Polymers (Basel); 2023 Jul; 15(13):. PubMed ID: 37447613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Dexamethasone-Eluting Porous Scaffold for Bone Regeneration Fabricated by Selective Laser Sintering.
    Sun Z; Wu F; Gao H; Cui K; Xian M; Zhong J; Tian Y; Fan S; Wu G
    ACS Appl Bio Mater; 2020 Dec; 3(12):8739-8747. PubMed ID: 35019645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additive manufacturing of Al
    Ur Rehman A; Ullah A; Liu T; Ur Rehman R; Salamci MU
    Front Chem; 2023; 11():1034473. PubMed ID: 36817171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical, Electrical, and Thermal Characterization of Pure Copper Parts Manufactured via Material Extrusion Additive Manufacturing.
    Cañadilla A; Romero A; Rodríguez GP; Caminero MÁ; Dura ÓJ
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of SiC/PVB Composite Powders for Selective Laser Sintering Additive Manufacturing of SiC.
    Zhou P; Qi H; Zhu Z; Qin H; Li H; Chu C; Yan M
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30336617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The potential of additive manufacturing technologies and their processing parameters for the fabrication of all-ceramic crowns: A review.
    Methani MM; Revilla-León M; Zandinejad A
    J Esthet Restor Dent; 2020 Mar; 32(2):182-192. PubMed ID: 31701629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.