These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29144755)

  • 1. Holographic Plasmonic Nanotweezers for Dynamic Trapping and Manipulation.
    Huft PR; Kolbow JD; Thweatt JT; Lindquist NC
    Nano Lett; 2017 Dec; 17(12):7920-7925. PubMed ID: 29144755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Optical Tweezers toward Molecular Manipulation: Tailoring Plasmonic Nanostructure, Light Source, and Resonant Trapping.
    Shoji T; Tsuboi Y
    J Phys Chem Lett; 2014 Sep; 5(17):2957-67. PubMed ID: 26278243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometrical phase and surface plasmon focusing with azimuthal polarization.
    Chen W; Nelson RL; Zhan Q
    Opt Lett; 2012 Feb; 37(4):581-3. PubMed ID: 22344113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoantenna effect dependent on the center structure of Bull's eye-type plasmonic chip.
    Nagasue T; Shinohara T; Hasegawa S; Imura K; Tawa K
    Opt Express; 2022 Feb; 30(5):7526-7538. PubMed ID: 35299513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic placement of plasmonic hotspots for super-resolution surface-enhanced Raman scattering.
    Ertsgaard CT; McKoskey RM; Rich IS; Lindquist NC
    ACS Nano; 2014 Oct; 8(10):10941-6. PubMed ID: 25268457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic nanotweezers: strong influence of adhesion layer and nanostructure orientation on trapping performance.
    Roxworthy BJ; Toussaint KC
    Opt Express; 2012 Apr; 20(9):9591-603. PubMed ID: 22535051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin-Orbit Angular-Momentum Transfer from a Nanogap Surface Plasmon to a Trapped Nanodiamond.
    Fujiwara H; Sudo K; Sunaba Y; Pin C; Ishida S; Sasaki K
    Nano Lett; 2021 Jul; 21(14):6268-6273. PubMed ID: 34270262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the position and orientation of single silver nanowires on a surface using structured optical fields.
    Yan Z; Sweet J; Jureller JE; Guffey MJ; Pelton M; Scherer NF
    ACS Nano; 2012 Sep; 6(9):8144-55. PubMed ID: 22900883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface.
    Zhang Y; Wang J; Shen J; Man Z; Shi W; Min C; Yuan G; Zhu S; Urbach HP; Yuan X
    Nano Lett; 2014 Nov; 14(11):6430-6. PubMed ID: 25302534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarization-Dependent Plasmonic Nano-Tweezer as a Platform for On-Chip Trapping and Manipulation of Virus-Like Particles.
    Mokri K; Mozaffari MH; Farmani A
    IEEE Trans Nanobioscience; 2022 Apr; 21(2):226-231. PubMed ID: 34665735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Holographic plasmonic lenses for surface plasmons with complex wavefront profile.
    Chen YH; Zhang M; Gan L; Wu X; Sun L; Liu J; Wang J; Li ZY
    Opt Express; 2013 Jul; 21(15):17558-66. PubMed ID: 23938627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced fluorescence microscopy with the Bull's eye-plasmonic chip.
    Tawa K; Izumi S; Sasakawa C; Hosokawa C; Toma M
    Opt Express; 2017 May; 25(9):10622-10631. PubMed ID: 28468434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light.
    Zhang J; Liu W; Zhu Z; Yuan X; Qin S
    Sci Rep; 2016 Dec; 6():38086. PubMed ID: 27905527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A numerical study on the closed packed array of gold discs as an efficient dual mode plasmonic tweezers.
    Aqhili A; Darbari S
    Sci Rep; 2021 Oct; 11(1):20656. PubMed ID: 34667247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle trapping and routing on plasmonic nanorails in a microfluidic channel.
    Yin S; He F; Green N; Fang X
    Opt Express; 2020 Jan; 28(2):1357-1368. PubMed ID: 32121848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis.
    Lin L; Peng X; Wang M; Scarabelli L; Mao Z; Liz-Marzán LM; Becker MF; Zheng Y
    ACS Nano; 2016 Oct; 10(10):9659-9668. PubMed ID: 27640212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-optically controlled holographic plasmonic vortex array for multiple metallic particles manipulation.
    Ju Z; Ma H; Zhang S; Xie X; Min C; Zhang Y; Yuan X
    Opt Lett; 2023 Dec; 48(24):6577-6580. PubMed ID: 38099803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional optical trapping and manipulation of single silver nanowires.
    Yan Z; Jureller JE; Sweet J; Guffey MJ; Pelton M; Scherer NF
    Nano Lett; 2012 Oct; 12(10):5155-61. PubMed ID: 22931238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metasurface holograms reaching 80% efficiency.
    Zheng G; Mühlenbernd H; Kenney M; Li G; Zentgraf T; Zhang S
    Nat Nanotechnol; 2015 Apr; 10(4):308-12. PubMed ID: 25705870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demonstration of an elliptical plasmonic lens illuminated with radially-like polarized field.
    Lerman GM; Yanai A; Ben-Yosef N; Levy U
    Opt Express; 2010 May; 18(10):10871-7. PubMed ID: 20588942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.