These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 29145072)

  • 1. Pyridoxamine driven selective turn-off detection of picric acid using glutathione stabilized fluorescent copper nanoclusters and its applications with chemically modified cellulose strips.
    Patel R; Bothra S; Kumar R; Crisponi G; Sahoo SK
    Biosens Bioelectron; 2018 Apr; 102():196-203. PubMed ID: 29145072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemically modified cellulose strips with pyridoxal conjugated red fluorescent gold nanoclusters for nanomolar detection of mercuric ions.
    Bothra S; Upadhyay Y; Kumar R; Ashok Kumar SK; Sahoo SK
    Biosens Bioelectron; 2017 Apr; 90():329-335. PubMed ID: 27940235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutathione-stabilized copper nanoclusters mediated-inner filter effect for sensitive and selective determination of p-nitrophenol and alkaline phosphatase activity.
    Wang HB; Tao BB; Wu NN; Zhang HD; Liu YM
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 271():120948. PubMed ID: 35104744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile sonochemical synthesis of pH-responsive copper nanoclusters for selective and sensitive detection of Pb(2+) in living cells.
    Wang C; Cheng H; Huang Y; Xu Z; Lin H; Zhang C
    Analyst; 2015 Aug; 140(16):5634-9. PubMed ID: 26133700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutathione-stabilized Cu nanoclusters as fluorescent probes for sensing pH and vitamin B1.
    Luo Y; Miao H; Yang X
    Talanta; 2015 Nov; 144():488-95. PubMed ID: 26452852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutathione-stabilized Cu nanocluster-based fluorescent probe for sensitive and selective detection of Hg
    Luo T; Zhang S; Wang Y; Wang M; Liao M; Kou X
    Luminescence; 2017 Sep; 32(6):1092-1099. PubMed ID: 28417589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PVP-templated highly luminescent copper nanoclusters for sensing trinitrophenol and living cell imaging.
    Li Y; Feng L; Yan W; Hussain I; Su L; Tan B
    Nanoscale; 2019 Jan; 11(3):1286-1294. PubMed ID: 30603761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the surface confinement effect of copper nanoclusters: construction of an ultrasensitive fluorescence turn-on bio-enzyme sensing platform.
    Yang J; Song N; Jia Q
    Nanoscale; 2019 Nov; 11(45):21927-21933. PubMed ID: 31701981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper nanoclusters as probes for turn-on fluorescence sensing of L-lysine.
    Zhang M; Qiao J; Zhang S; Qi L
    Talanta; 2018 May; 182():595-599. PubMed ID: 29501198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-emission ratiometric fluorescence probe based on copper nanoclusters for the detection of rutin and picric acid.
    Lin Q; Chu H; Chen J; Gao L; Zong W; Han S; Li J
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 270():120829. PubMed ID: 34999355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly fluorescent copper nanoclusters for sensing and bioimaging.
    An Y; Ren Y; Bick M; Dudek A; Hong-Wang Waworuntu E; Tang J; Chen J; Chang B
    Biosens Bioelectron; 2020 Apr; 154():112078. PubMed ID: 32056972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A turn-on fluorescence strategy for cellular glutathione determination based on the aggregation-induced emission enhancement of self-assembled copper nanoclusters.
    Wang HB; Mao AL; Gan T; Liu YM
    Analyst; 2020 Oct; 145(21):7009-7017. PubMed ID: 32870185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitive detection of glutathione through inhibiting quenching of copper nanoclusters fluorescence.
    Li L; Fu M; Yang D; Tu Y; Yan J
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 267(Pt 1):120563. PubMed ID: 34749113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Red emitting human serum albumin templated copper nanoclusters as effective candidates for highly specific biosensing of bilirubin.
    Rajamanikandan R; Ilanchelian M
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1064-1072. PubMed ID: 30812990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA-templated copper nanoclusters as a fluorescent probe for fluoride by using aluminum ions as a bridge.
    Pang J; Lu Y; Gao X; He L; Sun J; Yang F; Hao Z; Liu Y
    Mikrochim Acta; 2019 May; 186(6):364. PubMed ID: 31104105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cysteamine-capped copper nanoclusters as a highly selective turn-on fluorescent assay for the detection of aluminum ions.
    Boonmee C; Promarak V; Tuntulani T; Ngeontae W
    Talanta; 2018 Feb; 178():796-804. PubMed ID: 29136897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ultra-sensitive "turn-off" fluorescent sensor for the trace detection of rifampicin based on glutathione-stabilized copper nanoclusters.
    Wu XM; Zhang JH; Feng ZS; Chen WX; Zhang F; Li Y
    Analyst; 2020 Feb; 145(4):1227-1235. PubMed ID: 31898707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper nanoclusters: an efficient fluorescence sensing platform for quinoline yellow.
    Sivasankaran U; Radecki J; Radecka H; Girish Kumar K
    Luminescence; 2019 Mar; 34(2):243-248. PubMed ID: 30746849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescent and visual assay of H
    Mei H; Ma Y; Wu H; Wang X
    Anal Bioanal Chem; 2021 Mar; 413(8):2135-2146. PubMed ID: 33511458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adjustable luminescence copper nanoclusters nanoswitch based on competitive coordination of samarium ions for cascade detection of adenosine triphosphate and acid phosphatase activity.
    Huang X; Chen H; Huang R; Shi Y; Ye R; Qiu B
    Mikrochim Acta; 2023 Dec; 191(1):54. PubMed ID: 38151694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.