BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29145084)

  • 1. Low voltage electric potential as a driving force to hinder biofouling in self-supporting carbon nanotube membranes.
    Thamaraiselvan C; Ronen A; Lerman S; Balaish M; Ein-Eli Y; Dosoretz CG
    Water Res; 2018 Feb; 129():143-153. PubMed ID: 29145084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aquatic biofouling prevention by electrically charged nanocomposite polymer thin film membranes.
    de Lannoy CF; Jassby D; Gloe K; Gordon AD; Wiesner MR
    Environ Sci Technol; 2013 Mar; 47(6):2760-8. PubMed ID: 23413920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heatable carbon nanotube composite membranes for sustainable recovery from biofouling.
    Alvarez NT; Noga R; Chae SR; Sorial GA; Ryu H; Shanov V
    Biofouling; 2017 Nov; 33(10):847-854. PubMed ID: 28994321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrically conductive membranes for anti-biofouling in membrane distillation with two novel operation modes: Capacitor mode and resistor mode.
    Jiang L; Chen L; Zhu L
    Water Res; 2019 Sep; 161():297-307. PubMed ID: 31203035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-situ cathodic electrolysis coupled with hydraulic backwash inhibited biofilm formation on a backwashable carbon nanotube membrane.
    Fang G; Wang J; Li M; Yang Q; Huang H
    Sci Total Environ; 2023 Jun; 878():163130. PubMed ID: 37001670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocarbon-based membrane filtration integrated with electric field driving for effective membrane fouling mitigation.
    Fan X; Zhao H; Quan X; Liu Y; Chen S
    Water Res; 2016 Jan; 88():285-292. PubMed ID: 26512806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of Antifouling and Antimicrobial Abilities on Silver-Carbon Nanotube Based Membranes under Electrochemical Assistance.
    Fan X; Liu Y; Wang X; Quan X; Chen S
    Environ Sci Technol; 2019 May; 53(9):5292-5300. PubMed ID: 30933494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semiquantitative Performance and Mechanism Evaluation of Carbon Nanomaterials as Cathode Coatings for Microbial Fouling Reduction.
    Zhang Q; Nghiem J; Silverberg GJ; Vecitis CD
    Appl Environ Microbiol; 2015 Jul; 81(14):4744-55. PubMed ID: 25956770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interlaced CNT Electrodes for Bacterial Fouling Reduction of Microfiltration Membranes.
    Zhang Q; Arribas P; Remillard EM; García-Payo MC; Khayet M; Vecitis CD
    Environ Sci Technol; 2017 Aug; 51(16):9176-9183. PubMed ID: 28693315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Electric Fields on Biofouling of Carbonaceous Electrodes.
    Pandit S; Shanbhag S; Mauter M; Oren Y; Herzberg M
    Environ Sci Technol; 2017 Sep; 51(17):10022-10030. PubMed ID: 28741939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitigation of membrane biofouling by d-amino acids: Effect of bacterial cell-wall property and d-amino acid type.
    Wang SY; Sun XF; Gao WJ; Wang YF; Jiang BB; Afzal MZ; Song C; Wang SG
    Colloids Surf B Biointerfaces; 2018 Apr; 164():20-26. PubMed ID: 29367053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemically-active carbon nanotube coatings for biofouling mitigation: Cleaning kinetics and energy consumption for cathodic and anodic regimes.
    Rice D; Rajwade K; Zuo K; Bansal R; Li Q; Garcia-Segura S; Perreault F
    J Colloid Interface Sci; 2021 Dec; 603():391-397. PubMed ID: 34197987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inactivation of bacteria by electric current in the presence of carbon nanotubes embedded within a polymeric membrane.
    Zhu A; Liu HK; Long F; Su E; Klibanov AM
    Appl Biochem Biotechnol; 2015 Jan; 175(2):666-76. PubMed ID: 25342266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The anti-biofouling behavior of high voltage pulse electric field (HPEF) mediated by carbon fiber composite coating in seawater.
    Feng T; Wu J; Chai K; Yang P
    Bioelectrochemistry; 2018 Oct; 123():137-144. PubMed ID: 29751230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoporous solid-state membranes modified with multi-wall carbon nanotubes with anti-biofouling property.
    Alizadeh A; Razmjou A; Ghaedi M; Jannesar R
    Int J Nanomedicine; 2019; 14():1669-1685. PubMed ID: 30880972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in mitigating membrane biofouling using carbon-based materials.
    Wu Y; Xia Y; Jing X; Cai P; Igalavithana AD; Tang C; Tsang DCW; Ok YS
    J Hazard Mater; 2020 Jan; 382():120976. PubMed ID: 31454608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impacts of hydrophilic colanic acid on bacterial attachment to microfiltration membranes and subsequent membrane biofouling.
    Yoshida K; Tashiro Y; May T; Okabe S
    Water Res; 2015 Jun; 76():33-42. PubMed ID: 25776918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of permeate drag force on the development of a biofouling layer in a pressure-driven membrane separation system.
    Eshed L; Yaron S; Dosoretz CG
    Appl Environ Microbiol; 2008 Dec; 74(23):7338-47. PubMed ID: 18931284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insulated Interlaced Surface Electrodes for Bacterial Inactivation and Detachment.
    Zhang Q; Liu B; Gao G; Vecitis CD
    J Phys Chem B; 2023 Apr; 127(14):3164-3174. PubMed ID: 36996492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial Attachment Inhibition through Low-Voltage Electrochemical Reactions on Electrically Conducting Membranes.
    Ronen A; Duan W; Wheeldon I; Walker S; Jassby D
    Environ Sci Technol; 2015 Nov; 49(21):12741-50. PubMed ID: 26377588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.