These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 29145126)

  • 21. Renewable biochar derived from mixed sewage sludge and pine sawdust for carbon dioxide capture.
    Li K; Niu X; Zhang D; Guo H; Zhu X; Yin H; Lin Z; Fu M
    Environ Pollut; 2022 Aug; 306():119399. PubMed ID: 35525511
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Binder-type effect on the physico-mechanical, combustion and emission properties of Alstonia boonei De Wild. sawdust and Theobroma cacao L. pod biochar briquettes for energy applications.
    Glalah M; Antwi-Boasiako C; Adu-Gyamfi D
    PLoS One; 2024; 19(7):e0306827. PubMed ID: 39074109
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of production conditions on yield and physicochemical properties of biochars produced from rice husk and oil palm empty fruit bunches.
    Yavari S; Malakahmad A; Sapari NB
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):17928-40. PubMed ID: 27255313
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake.
    Angın D
    Bioresour Technol; 2013 Jan; 128():593-7. PubMed ID: 23211485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Partial oxidation of sewage sludge briquettes in a updraft fixed bed.
    Kim M; Lee Y; Park J; Ryu C; Ohm TI
    Waste Manag; 2016 Mar; 49():204-211. PubMed ID: 26860426
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Suitability of marginal biomass-derived biochars for soil amendment.
    Buss W; Graham MC; Shepherd JG; Mašek O
    Sci Total Environ; 2016 Mar; 547():314-322. PubMed ID: 26789369
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CO
    Goel C; Mohan S; Dinesha P
    Sci Total Environ; 2021 Dec; 798():149296. PubMed ID: 34325142
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C.
    Lee Y; Park J; Ryu C; Gang KS; Yang W; Park YK; Jung J; Hyun S
    Bioresour Technol; 2013 Nov; 148():196-201. PubMed ID: 24047681
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass.
    Wang S; Gao B; Zimmerman AR; Li Y; Ma L; Harris WG; Migliaccio KW
    Chemosphere; 2015 Sep; 134():257-62. PubMed ID: 25957037
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancing biochar yield by co-pyrolysis of bio-oil with biomass: impacts of potassium hydroxide addition and air pretreatment prior to co-pyrolysis.
    Veksha A; Zaman W; Layzell DB; Hill JM
    Bioresour Technol; 2014 Nov; 171():88-94. PubMed ID: 25189513
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A critical review on sustainable biochar system through gasification: Energy and environmental applications.
    You S; Ok YS; Chen SS; Tsang DCW; Kwon EE; Lee J; Wang CH
    Bioresour Technol; 2017 Dec; 246():242-253. PubMed ID: 28705422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic CO
    Lahijani P; Mohammadi M; Mohamed AR
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):11767-11780. PubMed ID: 30815812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation of Biomass Biochar with Components of Similar Proportions and Its Methylene Blue Adsorption.
    Hou M; He Y; Yang X; Yang Y; Lin X; Feng Y; Kan H; Hu H; He X; Liu C
    Molecules; 2023 Aug; 28(17):. PubMed ID: 37687090
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of pyrolysis atmosphere and temperature co-regulation on the sorption of tetracycline onto biochar: structure-performance relationship variation.
    Xiang Y; Zhang H; Yu S; Ni J; Wei R; Chen W
    Bioresour Technol; 2022 Sep; 360():127647. PubMed ID: 35868465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduction of Bromate by Cobalt-Impregnated Biochar Fabricated via Pyrolysis of Lignin Using CO
    Cho DW; Kwon G; Ok YS; Kwon EE; Song H
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13142-13150. PubMed ID: 28362484
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catalytic pyrolysis of biomass using fly ash leachate to increase carbon monoxide production and improve biochar properties to accelerate anaerobic digestion.
    Kobayashi T; Kuramochi H
    Bioresour Technol; 2023 Nov; 387():129583. PubMed ID: 37544544
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass.
    Li Y; Xing B; Ding Y; Han X; Wang S
    Bioresour Technol; 2020 Sep; 312():123614. PubMed ID: 32517889
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbon dioxide assisted sustainability enhancement of pyrolysis of waste biomass: A case study with spent coffee ground.
    Cho DW; Cho SH; Song H; Kwon EE
    Bioresour Technol; 2015; 189():1-6. PubMed ID: 25864025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficiency, by-product valorization, and pollution control of co-pyrolysis of textile dyeing sludge and waste solid adsorbents: Their atmosphere, temperature, and blend ratio dependencies.
    Zou H; Huang S; Ren M; Liu J; Evrendilek F; Xie W; Zhang G
    Sci Total Environ; 2022 May; 819():152923. PubMed ID: 34999078
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cardboard/sawdust briquettes as biomass fuel: Physical-mechanical and thermal characteristics.
    Lela B; Barišić M; Nižetić S
    Waste Manag; 2016 Jan; 47(Pt B):236-45. PubMed ID: 26560808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.