These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
449 related articles for article (PubMed ID: 29145461)
1. Climate change mitigation opportunities based on carbon footprint estimates of dietary patterns in Peru. Vázquez-Rowe I; Larrea-Gallegos G; Villanueva-Rey P; Gilardino A PLoS One; 2017; 12(11):e0188182. PubMed ID: 29145461 [TBL] [Abstract][Full Text] [Related]
2. Optimization of the environmental performance of food diets in Peru combining linear programming and life cycle methods. Larrea-Gallegos G; Vázquez-Rowe I Sci Total Environ; 2020 Jan; 699():134231. PubMed ID: 31677472 [TBL] [Abstract][Full Text] [Related]
3. Healthy diets with reduced environmental impact? - The greenhouse gas emissions of various diets adhering to the Dutch food based dietary guidelines. van de Kamp ME; van Dooren C; Hollander A; Geurts M; Brink EJ; van Rossum C; Biesbroek S; de Valk E; Toxopeus IB; Temme EHM Food Res Int; 2018 Feb; 104():14-24. PubMed ID: 29433779 [TBL] [Abstract][Full Text] [Related]
4. Meat consumption reduction in Italian regions: Health co-benefits and decreases in GHG emissions. Farchi S; De Sario M; Lapucci E; Davoli M; Michelozzi P PLoS One; 2017; 12(8):e0182960. PubMed ID: 28813467 [TBL] [Abstract][Full Text] [Related]
5. Environmental impacts of dietary shifts in India: A modelling study using nationally-representative data. Aleksandrowicz L; Green R; Joy EJM; Harris F; Hillier J; Vetter SH; Smith P; Kulkarni B; Dangour AD; Haines A Environ Int; 2019 May; 126():207-215. PubMed ID: 30802638 [TBL] [Abstract][Full Text] [Related]
6. Trends in greenhouse gas emissions from consumption and production of animal food products - implications for long-term climate targets. Cederberg C; Hedenus F; Wirsenius S; Sonesson U Animal; 2013 Feb; 7(2):330-40. PubMed ID: 23031741 [TBL] [Abstract][Full Text] [Related]
7. Contribution of different life cycle stages to the greenhouse gas emissions associated with three balanced dietary patterns. Corrado S; Luzzani G; Trevisan M; Lamastra L Sci Total Environ; 2019 Apr; 660():622-630. PubMed ID: 30641391 [TBL] [Abstract][Full Text] [Related]
8. Peru's road to climate action: Are we on the right path? The role of life cycle methods to improve Peruvian national contributions. Vázquez-Rowe I; Kahhat R; Larrea-Gallegos G; Ziegler-Rodriguez K Sci Total Environ; 2019 Apr; 659():249-266. PubMed ID: 30599344 [TBL] [Abstract][Full Text] [Related]
9. Organic quinoa (Chenopodium quinoa L.) production in Peru: Environmental hotspots and food security considerations using Life Cycle Assessment. Cancino-Espinoza E; Vázquez-Rowe I; Quispe I Sci Total Environ; 2018 Oct; 637-638():221-232. PubMed ID: 29751305 [TBL] [Abstract][Full Text] [Related]
10. Dietary changes to mitigate climate change and benefit public health in China. Song G; Li M; Fullana-I-Palmer P; Williamson D; Wang Y Sci Total Environ; 2017 Jan; 577():289-298. PubMed ID: 27802883 [TBL] [Abstract][Full Text] [Related]
11. Reducing GHG emissions while improving diet quality: exploring the potential of reduced meat, cheese and alcoholic and soft drinks consumption at specific moments during the day. van de Kamp ME; Seves SM; Temme EHM BMC Public Health; 2018 Feb; 18(1):264. PubMed ID: 29458352 [TBL] [Abstract][Full Text] [Related]
12. Low-carbon electricity production through the implementation of photovoltaic panels in rooftops in urban environments: A case study for three cities in Peru. Bazán J; Rieradevall J; Gabarrell X; Vázquez-Rowe I Sci Total Environ; 2018 May; 622-623():1448-1462. PubMed ID: 29890610 [TBL] [Abstract][Full Text] [Related]
13. Determination of the carbon footprint of all Galician production and consumption activities: Lessons learnt and guidelines for policymakers. Roibás L; Loiseau E; Hospido A J Environ Manage; 2017 Aug; 198(Pt 1):289-299. PubMed ID: 28477570 [TBL] [Abstract][Full Text] [Related]
14. Variations in greenhouse gas emissions of individual diets: Associations between the greenhouse gas emissions and nutrient intake in the United Kingdom. Rippin HL; Cade JE; Berrang-Ford L; Benton TG; Hancock N; Greenwood DC PLoS One; 2021; 16(11):e0259418. PubMed ID: 34813623 [TBL] [Abstract][Full Text] [Related]
16. Current available strategies to mitigate greenhouse gas emissions in livestock systems: an animal welfare perspective. Llonch P; Haskell MJ; Dewhurst RJ; Turner SP Animal; 2017 Feb; 11(2):274-284. PubMed ID: 27406001 [TBL] [Abstract][Full Text] [Related]
17. Food systems in a zero-deforestation world: Dietary change is more important than intensification for climate targets in 2050. Theurl MC; Lauk C; Kalt G; Mayer A; Kaltenegger K; Morais TG; Teixeira RFM; Domingos T; Winiwarter W; Erb KH; Haberl H Sci Total Environ; 2020 Sep; 735():139353. PubMed ID: 32474248 [TBL] [Abstract][Full Text] [Related]
18. Uncertainty analysis of life cycle greenhouse gas emissions from petroleum-based fuels and impacts on low carbon fuel policies. Venkatesh A; Jaramillo P; Griffin WM; Matthews HS Environ Sci Technol; 2011 Jan; 45(1):125-31. PubMed ID: 21043516 [TBL] [Abstract][Full Text] [Related]
19. Development and testing of a European Union-wide farm-level carbon calculator. Tuomisto HL; De Camillis C; Leip A; Nisini L; Pelletier N; Haastrup P Integr Environ Assess Manag; 2015 Jul; 11(3):404-16. PubMed ID: 25655187 [TBL] [Abstract][Full Text] [Related]
20. Towards an environmentally sustainable and healthy Atlantic dietary pattern: Life cycle carbon footprint and nutritional quality. Esteve-Llorens X; Darriba C; Moreira MT; Feijoo G; González-García S Sci Total Environ; 2019 Jan; 646():704-715. PubMed ID: 30059930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]