These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 2914609)

  • 1. One left-handed strand in DNA-oligonucleotide complexes?
    Gago F; Richards WG
    FEBS Lett; 1989 Jan; 242(2):270-4. PubMed ID: 2914609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition and cleavage of single-stranded DNA containing hairpin structures by oligonucleotides forming both Watson-Crick and Hoogsteen hydrogen bonds.
    François JC; Hélène C
    Biochemistry; 1995 Jan; 34(1):65-72. PubMed ID: 7819224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular recognition of Watson-Crick base-pair reversals in triple-helix formation: use of nonnatural oligonucleotide bases.
    Mohan V; Cheng YK; Marlow GE; Pettitt BM
    Biopolymers; 1993 Sep; 33(9):1317-25. PubMed ID: 8400029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanics calculations of the riboacetal internucleotide linkage in double and triple helices.
    Torres RA; Almarsson O; Bruice TC
    Proc Natl Acad Sci U S A; 1996 Jul; 93(14):6875-80. PubMed ID: 8692911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanics calculations of the structures of polyamide nucleic acid DNA duplexes and triple helical hybrids.
    Almarsson O; Bruice TC; Kerr J; Zuckermann RN
    Proc Natl Acad Sci U S A; 1993 Aug; 90(16):7518-22. PubMed ID: 8356048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex.
    Walter A; Schütz H; Simon H; Birch-Hirschfeld E
    J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA stretching and compression: large-scale simulations of double helical structures.
    Kosikov KM; Gorin AA; Zhurkin VB; Olson WK
    J Mol Biol; 1999 Jun; 289(5):1301-26. PubMed ID: 10373369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some implications of an alternative structure for DNA.
    Sasisekharan V; Pattabiraman N; Gupta G
    Proc Natl Acad Sci U S A; 1978 Sep; 75(9):4092-6. PubMed ID: 279899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual recognition of double-stranded DNA by 2'-aminoethoxy-modified oligonucleotides: the solution structure of an intramolecular triplex obtained by NMR spectroscopy.
    Blommers MJ; Natt F; Jahnke W; Cuenoud B
    Biochemistry; 1998 Dec; 37(51):17714-25. PubMed ID: 9922137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics investigations of DNA triple helical models: unique features of the Watson-Crick duplex.
    Sekharudu CY; Yathindra N; Sundaralingam M
    J Biomol Struct Dyn; 1993 Oct; 11(2):225-44. PubMed ID: 8286053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hoogsteen DNA duplexes of 3'-3'- and 5'-5'-linked oligonucleotides and trip formation with RNA and DNA pyrimidine single strands: experimental and molecular modeling studies.
    Kandimalla ER; Agrawal S
    Biochemistry; 1996 Dec; 35(48):15332-9. PubMed ID: 8952484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence-specific recognition of double helical RNA and RNA.DNA by triple helix formation.
    Han H; Dervan PB
    Proc Natl Acad Sci U S A; 1993 May; 90(9):3806-10. PubMed ID: 7683407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray diffraction from the side-by-side model of DNA.
    Greenall RJ; Pigram WJ; Fuller W
    Nature; 1979 Dec 20-27; 282(5741):880-2. PubMed ID: 514369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of steady-state kinetic parameters for DNA unwinding by the bacteriophage T4 Dda helicase: use of peptide nucleic acids to trap single-stranded DNA products of helicase reactions.
    Nanduri B; Eoff RL; Tackett AJ; Raney KD
    Nucleic Acids Res; 2001 Jul; 29(13):2829-35. PubMed ID: 11433029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of HIV-1 reverse transcription by triple-helix forming oligonucleotides with viral RNA.
    Volkmann S; Jendis J; Frauendorf A; Moelling K
    Nucleic Acids Res; 1995 Apr; 23(7):1204-12. PubMed ID: 7537875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA unwinding upon strand-displacement binding of a thymine-substituted polyamide to double-stranded DNA.
    Cherny DY; Belotserkovskii BP; Frank-Kamenetskii MD; Egholm M; Buchardt O; Berg RH; Nielsen PE
    Proc Natl Acad Sci U S A; 1993 Mar; 90(5):1667-70. PubMed ID: 8383322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetics of cooperative binding of oligonucleotides with discrete dimerization domains to DNA by triple helix formation.
    Distefano MD; Dervan PB
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1179-83. PubMed ID: 8433980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triple Helix Formation in a Topologically Controlled DNA Nanosystem.
    Yamagata Y; Emura T; Hidaka K; Sugiyama H; Endo M
    Chemistry; 2016 Apr; 22(16):5494-8. PubMed ID: 26938310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The formation of adjacent triplex-duplex domainsin DNA.
    Nam KH; Abhiraman S; Wartell RM
    Nucleic Acids Res; 1999 Feb; 27(3):859-65. PubMed ID: 9889284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of a 5'-phosphate on the stability of triple helix.
    Yoon K; Hobbs CA; Walter AE; Turner DH
    Nucleic Acids Res; 1993 Feb; 21(3):601-6. PubMed ID: 8441671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.