These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 29146283)

  • 1. A computational framework for estimating statistical power and planning hypothesis-driven experiments involving one-dimensional biomechanical continua.
    Pataky TC; Robinson MA; Vanrenterghem J
    J Biomech; 2018 Jan; 66():159-164. PubMed ID: 29146283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zero- vs. one-dimensional, parametric vs. non-parametric, and confidence interval vs. hypothesis testing procedures in one-dimensional biomechanical trajectory analysis.
    Pataky TC; Vanrenterghem J; Robinson MA
    J Biomech; 2015 May; 48(7):1277-85. PubMed ID: 25817475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sample size estimation for biomechanical waveforms: Current practice, recommendations and a comparison to discrete power analysis.
    Robinson MA; Vanrenterghem J; Pataky TC
    J Biomech; 2021 Jun; 122():110451. PubMed ID: 33933866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Region-of-interest analyses of one-dimensional biomechanical trajectories: bridging 0D and 1D theory, augmenting statistical power.
    Pataky TC; Robinson MA; Vanrenterghem J
    PeerJ; 2016; 4():e2652. PubMed ID: 27833816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sample size estimation in locomotion kinematics and electromyography for statistical parametric mapping.
    Luciano F; Ruggiero L; Pavei G
    J Biomech; 2021 Jun; 122():110481. PubMed ID: 33933861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The probability of false positives in zero-dimensional analyses of one-dimensional kinematic, force and EMG trajectories.
    Pataky TC; Vanrenterghem J; Robinson MA
    J Biomech; 2016 Jun; 49(9):1468-1476. PubMed ID: 27067363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smoothing can systematically bias small samples of one-dimensional biomechanical continua.
    Pataky TC; Robinson MA; Vanrenterghem J; Challis JH
    J Biomech; 2019 Jan; 82():330-336. PubMed ID: 30471793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vector field statistical analysis of kinematic and force trajectories.
    Pataky TC; Robinson MA; Vanrenterghem J
    J Biomech; 2013 Sep; 46(14):2394-401. PubMed ID: 23948374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of random-field-theory and false-discovery-rate inference results in the analysis of registered one-dimensional biomechanical datasets.
    Naouma H; Pataky TC
    PeerJ; 2019; 7():e8189. PubMed ID: 31844582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-way ANOVA for scalar trajectories, with experimental evidence of non-phasic interactions.
    Pataky TC; Vanrenterghem J; Robinson MA
    J Biomech; 2015 Jan; 48(1):186-9. PubMed ID: 25458576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the validity of statistical parametric mapping for nonuniformly and heterogeneously smooth one-dimensional biomechanical data.
    Pataky TC; Vanrenterghem J; Robinson MA; Liebl D
    J Biomech; 2019 Jun; 91():114-123. PubMed ID: 31155212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical Power in Plant Pathology Research.
    Gent DH; Esker PD; Kriss AB
    Phytopathology; 2018 Jan; 108(1):15-22. PubMed ID: 28876210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significance, Errors, Power, and Sample Size: The Blocking and Tackling of Statistics.
    Mascha EJ; Vetter TR
    Anesth Analg; 2018 Feb; 126(2):691-698. PubMed ID: 29346210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty.
    Marra MA; Vanheule V; Fluit R; Koopman BH; Rasmussen J; Verdonschot N; Andersen MS
    J Biomech Eng; 2015 Feb; 137(2):020904. PubMed ID: 25429519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. COMAP: a new computational interpretation of human movement planning level based on coordinated minimum angle jerk policies and six universal movement elements.
    Emadi Andani M; Bahrami F
    Hum Mov Sci; 2012 Oct; 31(5):1037-55. PubMed ID: 22925477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpreting principal components in biomechanics: representative extremes and single component reconstruction.
    Brandon SC; Graham RB; Almosnino S; Sadler EM; Stevenson JM; Deluzio KJ
    J Electromyogr Kinesiol; 2013 Dec; 23(6):1304-10. PubMed ID: 24209874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical modeling to characterize relationships between knee anatomy and kinematics.
    Smoger LM; Fitzpatrick CK; Clary CW; Cyr AJ; Maletsky LP; Rullkoetter PJ; Laz PJ
    J Orthop Res; 2015 Nov; 33(11):1620-30. PubMed ID: 25991502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power to the People: Power, Negative Results and Sample Size.
    Gaskill BN; Garner JP
    J Am Assoc Lab Anim Sci; 2020 Jan; 59(1):9-16. PubMed ID: 31852563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint.
    Naghibi Beidokhti H; Janssen D; van de Groes S; Hazrati J; Van den Boogaard T; Verdonschot N
    J Biomech; 2017 Dec; 65():1-11. PubMed ID: 28917580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How to test hypotheses if you must.
    Grieve AP
    Pharm Stat; 2015; 14(2):139-50. PubMed ID: 25641830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.