BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29146334)

  • 1. Impact of fluorescent lighting on the browning potential of model wine solutions containing organic acids and iron.
    Grant-Preece P; Barril C; Schmidtke LM; Clark AC
    Food Chem; 2018 Mar; 243():239-248. PubMed ID: 29146334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Fluorescent Lighting on Oxidation of Model Wine Solutions Containing Organic Acids and Iron.
    Grant-Preece P; Barril C; Schmidtke LM; Clark AC
    J Agric Food Chem; 2017 Mar; 65(11):2383-2393. PubMed ID: 28238266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of organic acid on cyanidin-3-O-glucoside oxidation mediated by iron in model Chinese bayberry wine.
    Zhang Z; Li J; Fan L; Duan Z
    Food Chem; 2020 Apr; 310():125980. PubMed ID: 31838371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoproduction of glyoxylic acid in model wine: Impact of sulfur dioxide, caffeic acid, pH and temperature.
    Grant-Preece P; Schmidtke LM; Barril C; Clark AC
    Food Chem; 2017 Jan; 215():292-300. PubMed ID: 27542478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effect of buffering agents on the crystallization of gemcitabine hydrochloride in frozen solutions.
    Patel M; Munjal B; Bansal AK
    Int J Pharm; 2014 Aug; 471(1-2):56-64. PubMed ID: 24836665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isomeric influence on the oxidative coloration of phenolic compounds in a model white wine: comparison of (+)-catechin and (-)-epicatechin.
    Labrouche F; Clark AC; Prenzler PD; Scollary GR
    J Agric Food Chem; 2005 Dec; 53(26):9993-8. PubMed ID: 16366685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron(III) tartrate as a potential precursor of light-induced oxidative degradation of white wine: studies in a model wine system.
    Clark AC; Dias DA; Smith TA; Ghiggino KP; Scollary GR
    J Agric Food Chem; 2011 Apr; 59(8):3575-81. PubMed ID: 21381783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of tartaric and malic acids in wine oxidation.
    Danilewicz JC
    J Agric Food Chem; 2014 Jun; 62(22):5149-55. PubMed ID: 24809227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delaying effect of a wine Lactobacillus plantarum strain on the coloration and xanthylium pigment formation occurring in (+)-catechin and (-)-epicatechin wine model solutions.
    Curiel JA; Muñoz R; López de Felipe F
    J Agric Food Chem; 2010 Nov; 58(21):11318-24. PubMed ID: 20925383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel method for classification of wine based on organic acids.
    Milovanovic M; Žeravík J; Obořil M; Pelcová M; Lacina K; Cakar U; Petrovic A; Glatz Z; Skládal P
    Food Chem; 2019 Jun; 284():296-302. PubMed ID: 30744861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory effect of fungoid chitosan in the generation of aldehydes relevant to photooxidative decay in a sulphite-free white wine.
    Castro Marin A; Stocker P; Chinnici F; Cassien M; Thétiot-Laurent S; Vidal N; Riponi C; Robillard B; Culcasi M; Pietri S
    Food Chem; 2021 Jul; 350():129222. PubMed ID: 33607411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of ethanol, glycerol, glucose/fructose and tartaric acid on the refractive index of model aqueous solutions and wine samples.
    Shehadeh A; Evangelou A; Kechagia D; Tataridis P; Chatzilazarou A; Shehadeh F
    Food Chem; 2020 Nov; 329():127085. PubMed ID: 32512390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of ethanol, glycerol, glucose and tartaric acid on the viscosity of model aqueous solutions and wine samples.
    Shehadeh A; Kechagia D; Evangelou A; Tataridis P; Shehadeh F
    Food Chem; 2019 Dec; 300():125191. PubMed ID: 31352290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wine production using free and immobilized kefir culture on natural supports.
    Nikolaou A; Tsakiris A; Kanellaki M; Bezirtzoglou E; Akrida-Demertzi K; Kourkoutas Y
    Food Chem; 2019 Jan; 272():39-48. PubMed ID: 30309560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of quinones reactions with wine nucleophiles by cyclic voltammetry.
    Oliveira CM; Barros AS; Ferreira AC; Silva AM
    Food Chem; 2016 Nov; 211():1-7. PubMed ID: 27283600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of ultrasound on the production of xanthylium cation pigments in a model wine.
    Fu XZ; Zhang QA; Zhang BS; Liu P
    Food Chem; 2018 Dec; 268():431-440. PubMed ID: 30064780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Xanthylium Derivatives on the Color of White Wine.
    Bührle F; Gohl A; Weber F
    Molecules; 2017 Aug; 22(8):. PubMed ID: 28825618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of organic acids on adsorption and desorption of rare earth elements.
    Shan XQ; Lian J; Wen B
    Chemosphere; 2002 May; 47(7):701-10. PubMed ID: 12079065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New phenolic compounds formed by evolution of (+)-catechin and glyoxylic acid in hydroalcoholic solution and their implication in color changes of grape-derived foods.
    Es-Safi NE; Le Guernevé C; Cheynier V; Moutounet M
    J Agric Food Chem; 2000 Sep; 48(9):4233-40. PubMed ID: 10995343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of stereochemistry of antioxidants and flavonols on oxidation processes in a model wine system: ascorbic acid, erythorbic acid, +-catechin and (-)-epicatechin.
    Clark AC; Vestner J; Barril C; Maury C; Prenzler PD; Scollary GR
    J Agric Food Chem; 2010 Jan; 58(2):1004-11. PubMed ID: 20039675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.