BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29146339)

  • 1. Proteomic profiling of oxidized cysteine and methionine residues by hydroxyl radicals in myosin of pork.
    Lu H; Luo Y; Lametsch R
    Food Chem; 2018 Mar; 243():277-284. PubMed ID: 29146339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation-induced unfolding facilitates Myosin cross-linking in myofibrillar protein by microbial transglutaminase.
    Li C; Xiong YL; Chen J
    J Agric Food Chem; 2012 Aug; 60(32):8020-7. PubMed ID: 22809283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of porcine Myosin by hypervalent myoglobin: the role of thiol groups.
    Frederiksen AM; Lund MN; Andersen ML; Skibsted LH
    J Agric Food Chem; 2008 May; 56(9):3297-304. PubMed ID: 18393506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiolytic modification of sulfur-containing amino acid residues in model peptides: fundamental studies for protein footprinting.
    Xu G; Chance MR
    Anal Chem; 2005 Apr; 77(8):2437-49. PubMed ID: 15828779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Curtailing Oxidation-Induced Loss of Myosin Gelling Potential by Pyrophosphate Through Shielding the S1 Subfragment.
    Liu Z; True AD; Xiong YL
    J Food Sci; 2015 Jul; 80(7):C1468-75. PubMed ID: 25990830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different physicochemical, structural and digestibility characteristics of myofibrillar protein from PSE and normal pork before and after oxidation.
    Chen L; Li C; Ullah N; Guo Y; Sun X; Wang X; Xu X; Hackman RM; Zhou G; Feng X
    Meat Sci; 2016 Nov; 121():228-237. PubMed ID: 27348321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The oxidation of yeast alcohol dehydrogenase-1 by hydrogen peroxide in vitro.
    Men L; Wang Y
    J Proteome Res; 2007 Jan; 6(1):216-25. PubMed ID: 17203966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of the Fenton process in meat digestion as assessed using an in vitro gastro-intestinal model.
    Oueslati K; de La Pomélie D; Santé-Lhoutellier V; Gatellier P
    Food Chem; 2016 Oct; 209():43-9. PubMed ID: 27173532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled Cross-Linking with Glucose Oxidase for the Enhancement of Gelling Potential of Pork Myofibrillar Protein.
    Wang X; Xiong YL; Sato H; Kumazawa Y
    J Agric Food Chem; 2016 Dec; 64(50):9523-9531. PubMed ID: 27936702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation of myosin by haem proteins generates myosin radicals and protein cross-links.
    Lund MN; Luxford C; Skibsted LH; Davies MJ
    Biochem J; 2008 Mar; 410(3):565-74. PubMed ID: 18039181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cysteine mutants of light chain-2 form disulfide bonds in skeletal muscle myosin.
    Wolff-Long VL; Saraswat LD; Lowey S
    J Biol Chem; 1993 Nov; 268(31):23162-7. PubMed ID: 8226834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secondary reactions and strategies to improve quantitative protein footprinting.
    Xu G; Kiselar J; He Q; Chance MR
    Anal Chem; 2005 May; 77(10):3029-37. PubMed ID: 15889890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation in the cross-linking pattern of porcine myofibrillar protein exposed to three oxidative environments.
    Xiong YL; Park D; Ooizumi T
    J Agric Food Chem; 2009 Jan; 57(1):153-9. PubMed ID: 19061417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein oxidation at different salt concentrations affects the cross-linking and gelation of pork myofibrillar protein catalyzed by microbial transglutaminase.
    Li C; Xiong YL; Chen J
    J Food Sci; 2013 Jun; 78(6):C823-31. PubMed ID: 23627930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-thawing metabolite profile and amino acid oxidation of thawed pork tenderloin by HVEF-A short communication.
    Jia G; Sha K; Feng X; Liu H
    Food Chem; 2019 Sep; 291():16-21. PubMed ID: 31006455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Top-Down ETD-MS Provides Unreliable Quantitation of Methionine Oxidation.
    Tadi S; Sharp JS
    J Biomol Tech; 2019 Dec; 30(4):50-57. PubMed ID: 31662705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High resolution mass spectrometry characterization of the oxidation pattern of methionine and cysteine residues in rat liver mitochondria voltage-dependent anion selective channel 3 (VDAC3).
    Saletti R; Reina S; Pittalà MG; Belfiore R; Cunsolo V; Messina A; De Pinto V; Foti S
    Biochim Biophys Acta Biomembr; 2017 Mar; 1859(3):301-311. PubMed ID: 27989743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of restricting factors that inhibit swelling of oxidized myofibrils during brine irrigation.
    Liu Z; Xiong YL; Chen J
    J Agric Food Chem; 2009 Nov; 57(22):10999-1007. PubMed ID: 19919128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disruption of secondary structure by oxidative stress alters the cross-linking pattern of myosin by microbial transglutaminase.
    Li C; Xiong YL
    Meat Sci; 2015 Oct; 108():97-105. PubMed ID: 26068405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of sulfide radical cations through complexation with the peptide bond: mechanisms relevant to oxidation of proteins containing multiple methionine residues.
    Bobrowski K; Hug GL; Pogocki D; Marciniak B; Schöneich C
    J Phys Chem B; 2007 Aug; 111(32):9608-20. PubMed ID: 17658786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.