These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29146339)

  • 21. Key role of cysteine residues and sulfenic acids in thermal- and H2O2-mediated modification of β-lactoglobulin.
    Krämer AC; Thulstrup PW; Lund MN; Davies MJ
    Free Radic Biol Med; 2016 Aug; 97():544-555. PubMed ID: 27430598
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protection of GroEL by its methionine residues against oxidation by hydrogen peroxide.
    Melkani GC; Kestetter J; Sielaff R; Zardeneta G; Mendoza JA
    Biochem Biophys Res Commun; 2006 Aug; 347(2):534-9. PubMed ID: 16828704
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of Oxidation in Vitro on Structures and Functions of Myofibrillar Protein from Beef Muscles.
    Fu Q; Liu R; Wang H; Hua C; Song S; Zhou G; Zhang W
    J Agric Food Chem; 2019 May; 67(20):5866-5873. PubMed ID: 31026156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications.
    Guo J; Gaffrey MJ; Su D; Liu T; Camp DG; Smith RD; Qian WJ
    Nat Protoc; 2014 Jan; 9(1):64-75. PubMed ID: 24336471
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence of peptide oxidation from major myofibrillar proteins in dry-cured ham.
    Gallego M; Mora L; Aristoy MC; Toldrá F
    Food Chem; 2015 Nov; 187():230-5. PubMed ID: 25977021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of cysteine, methionine and tryptophan residues of actin oxidized in vivo during oxidative stress.
    Fedorova M; Kuleva N; Hoffmann R
    J Proteome Res; 2010 Mar; 9(3):1598-609. PubMed ID: 20063901
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Free thiols of platelet thrombospondin. Evidence for disulfide isomerization.
    Speziale MV; Detwiler TC
    J Biol Chem; 1990 Oct; 265(29):17859-67. PubMed ID: 2211666
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biochemical susceptibility of myosin in chicken myofibrils subjected to hydroxyl radical oxidizing systems.
    Ooizumi T; Xiong YL
    J Agric Food Chem; 2004 Jun; 52(13):4303-7. PubMed ID: 15212484
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Disulfide bond within mu-calpain active site inhibits activity and autolysis.
    Lametsch R; Lonergan S; Huff-Lonergan E
    Biochim Biophys Acta; 2008 Sep; 1784(9):1215-21. PubMed ID: 18501725
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterizing closely spaced, complex disulfide bond patterns in peptides and proteins by liquid chromatography/electrospray ionization tandem mass spectrometry.
    Yen TY; Yan H; Macher BA
    J Mass Spectrom; 2002 Jan; 37(1):15-30. PubMed ID: 11813307
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mild oxidation promotes myosin S2 cross-linking by microbial transglutaminase.
    Li C; Xiong YL
    Food Chem; 2019 Jul; 287():390-397. PubMed ID: 30857716
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deciphering the Biophysical Effects of Oxidizing Sulfur-Containing Amino Acids in Interferon-beta-1a using MS and HDX-MS.
    Houde DJ; Bou-Assaf GM; Berkowitz SA
    J Am Soc Mass Spectrom; 2017 May; 28(5):840-849. PubMed ID: 28194741
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxidation-initiated myosin subfragment cross-linking and structural instability differences between white and red muscle fiber types.
    Liu C; Xiong YL
    J Food Sci; 2015 Feb; 80(2):C288-97. PubMed ID: 25604073
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control.
    Jones DP; Go YM; Anderson CL; Ziegler TR; Kinkade JM; Kirlin WG
    FASEB J; 2004 Aug; 18(11):1246-8. PubMed ID: 15180957
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidative stress inactivates cobalamin-independent methionine synthase (MetE) in Escherichia coli.
    Hondorp ER; Matthews RG
    PLoS Biol; 2004 Nov; 2(11):e336. PubMed ID: 15502870
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of in vitro oxidation on myofibrillar protein charge, aggregation, and structural characteristics.
    Zhang D; Li H; Wang Z; Emara AM; Hu Y; He Z
    Food Chem; 2020 Dec; 332():127396. PubMed ID: 32615386
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calmodulin methionine residues are targets for one-electron oxidation by hydroxyl radicals: formation of S[therefore]N three-electron bonded radical complexes.
    Nauser T; Jacoby M; Koppenol WH; Squier TC; Schöneich C
    Chem Commun (Camb); 2005 Feb; (5):587-9. PubMed ID: 15672144
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aliphatic peptidyl hydroperoxides as a source of secondary oxidation in hydroxyl radical protein footprinting.
    Saladino J; Liu M; Live D; Sharp JS
    J Am Soc Mass Spectrom; 2009 Jun; 20(6):1123-6. PubMed ID: 19278868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Moderate Protein Oxidation Improves Bovine Myofibril Digestibility by Releasing Peptides in the S2 Region of Myosin: A Peptidomics Perspective.
    Yin Y; Xing L; Zhang W
    J Agric Food Chem; 2023 Feb; 71(5):2514-2522. PubMed ID: 36703551
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Roles for the two cysteine residues of AhpC in catalysis of peroxide reduction by alkyl hydroperoxide reductase from Salmonella typhimurium.
    Ellis HR; Poole LB
    Biochemistry; 1997 Oct; 36(43):13349-56. PubMed ID: 9341227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.