These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 29146342)
1. Detection of coffee adulteration with soybean and corn by capillary electrophoresis-tandem mass spectrometry. Daniel D; Lopes FS; Santos VBD; do Lago CL Food Chem; 2018 Mar; 243():305-310. PubMed ID: 29146342 [TBL] [Abstract][Full Text] [Related]
2. Determination of biogenic amines in beer and wine by capillary electrophoresis-tandem mass spectrometry. Daniel D; Dos Santos VB; Vidal DT; do Lago CL J Chromatogr A; 2015 Oct; 1416():121-8. PubMed ID: 26362807 [TBL] [Abstract][Full Text] [Related]
3. A simple voltammetric electronic tongue for the analysis of coffee adulterations. de Morais TCB; Rodrigues DR; de Carvalho Polari Souto UT; Lemos SG Food Chem; 2019 Feb; 273():31-38. PubMed ID: 30292371 [TBL] [Abstract][Full Text] [Related]
4. Detection of acacia honey adulteration with high fructose corn syrup through determination of targeted α‑Dicarbonyl compound using ion mobility-mass spectrometry coupled with UHPLC-MS/MS. Yan S; Song M; Wang K; Fang X; Peng W; Wu L; Xue X Food Chem; 2021 Aug; 352():129312. PubMed ID: 33652193 [TBL] [Abstract][Full Text] [Related]
5. Determination of primary aromatic amines from cooking utensils by capillary electrophoresis-tandem mass spectrometry. Perez MÂF; Daniel D; Padula M; do Lago CL; Bottoli CBG Food Chem; 2021 Nov; 362():129902. PubMed ID: 34175690 [TBL] [Abstract][Full Text] [Related]
6. Optimized hydrolysis and analysis of Radix Asparagi polysaccharide monosaccharide composition by capillary zone electrophoresis. Chen J; Yang F; Guo H; Wu F; Wang X J Sep Sci; 2015 Jul; 38(13):2327-31. PubMed ID: 25885471 [TBL] [Abstract][Full Text] [Related]
7. Amphetamine and derivatives in natural weight loss pills and dietary supplements by capillary electrophoresis-tandem mass spectrometry. Dos Santos VB; Daniel D; Singh M; do Lago CL J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Dec; 1038():19-25. PubMed ID: 27776329 [TBL] [Abstract][Full Text] [Related]
8. Determination of monosaccharide composition in plant fiber materials by capillary zone electrophoresis. Rovio S; Simolin H; Koljonen K; Sirén H J Chromatogr A; 2008 Mar; 1185(1):139-44. PubMed ID: 18255080 [TBL] [Abstract][Full Text] [Related]
9. Detection of adulterations in processed coffee with cereals and coffee husks using capillary zone electrophoresis. Nogueira T; do Lago CL J Sep Sci; 2009 Oct; 32(20):3507-11. PubMed ID: 19777453 [TBL] [Abstract][Full Text] [Related]
10. Validation of analytical conditions for determination of polycyclic aromatic hydrocarbons in roasted coffee by gas chromatography-mass spectrometry. Guatemala-Morales GM; Beltrán-Medina EA; Murillo-Tovar MA; Ruiz-Palomino P; Corona-González RI; Arriola-Guevara E Food Chem; 2016 Apr; 197(Pt A):747-53. PubMed ID: 26617012 [TBL] [Abstract][Full Text] [Related]
11. Monosaccharide profiling of glycoproteins by capillary electrophoresis with contactless conductivity detection. Tomnikova A; Kozlík P; Křížek T Electrophoresis; 2022 Oct; 43(20):1963-1970. PubMed ID: 35961667 [TBL] [Abstract][Full Text] [Related]
12. Analysis of coffee adulterated with roasted corn and roasted soybean using voltammetric electronic tongue. Arrieta AA; Arrieta PL; Mendoza JM Acta Sci Pol Technol Aliment; 2019; 18(1):35-41. PubMed ID: 30927750 [TBL] [Abstract][Full Text] [Related]
13. Coffee arabica adulteration: Detection of wheat, corn and chickpea. Sezer B; Apaydin H; Bilge G; Boyaci IH Food Chem; 2018 Oct; 264():142-148. PubMed ID: 29853358 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous determination of monosaccharides in glycoproteins by capillary electrophoresis. Soga T; Heiger DN Anal Biochem; 1998 Jul; 261(1):73-8. PubMed ID: 9683514 [TBL] [Abstract][Full Text] [Related]
15. Determination of neutral carbohydrates by CZE with direct UV detection. Rovio S; Yli-Kauhaluoma J; Sirén H Electrophoresis; 2007 Aug; 28(17):3129-35. PubMed ID: 17661315 [TBL] [Abstract][Full Text] [Related]
16. Monosaccharides in roasted and instant coffees. Kröplien U J Agric Food Chem; 1974; 22(1):110-16. PubMed ID: 4811628 [No Abstract] [Full Text] [Related]
17. Quantitative assessment of specific defects in roasted ground coffee via infrared-photoacoustic spectroscopy. Dias RCE; Valderrama P; Março PH; Dos Santos Scholz MB; Edelmann M; Yeretzian C Food Chem; 2018 Jul; 255():132-138. PubMed ID: 29571458 [TBL] [Abstract][Full Text] [Related]
18. Gamma-tocopherol as a marker of Brazilian coffee (Coffea arabica L.) adulteration by corn. Jham GN; Winkler JK; Berhow MA; Vaughn SF J Agric Food Chem; 2007 Jul; 55(15):5995-9. PubMed ID: 17602658 [TBL] [Abstract][Full Text] [Related]
19. Detection of Corn Adulteration in Brazilian Coffee (Coffea arabica) by Tocopherol Profiling and Near-Infrared (NIR) Spectroscopy. Winkler-Moser JK; Singh M; Rennick KA; Bakota EL; Jham G; Liu SX; Vaughn SF J Agric Food Chem; 2015 Dec; 63(49):10662-8. PubMed ID: 26600312 [TBL] [Abstract][Full Text] [Related]
20. Quantification of Corn Adulteration in Wet and Dry-Processed Peaberry Ground Roasted Coffees by UV-Vis Spectroscopy and Chemometrics. Yulia M; Suhandy D Molecules; 2021 Oct; 26(20):. PubMed ID: 34684672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]