These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29146810)

  • 1. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon.
    Upham DC; Agarwal V; Khechfe A; Snodgrass ZR; Gordon MJ; Metiu H; McFarland EW
    Science; 2017 Nov; 358(6365):917-921. PubMed ID: 29146810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of dry (CO2) reforming of methane over noble metal catalysts.
    Pakhare D; Spivey J
    Chem Soc Rev; 2014 Nov; 43(22):7813-37. PubMed ID: 24504089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Splitting of Methane in Molten Salts To Produce Hydrogen.
    Fan Z; Xiao W
    Angew Chem Int Ed Engl; 2021 Mar; 60(14):7664-7668. PubMed ID: 33427374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Review on Bimetallic Nickel-Based Catalysts for CO
    Bian Z; Das S; Wai MH; Hongmanorom P; Kawi S
    Chemphyschem; 2017 Nov; 18(22):3117-3134. PubMed ID: 28710875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New molten metal catalysts for CO
    Cai G; Zong Z; Smith KJ; Upham DC
    Chem Commun (Camb); 2023 Jun; 59(52):8143-8146. PubMed ID: 37309840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces.
    Kuhl KP; Hatsukade T; Cave ER; Abram DN; Kibsgaard J; Jaramillo TF
    J Am Chem Soc; 2014 Oct; 136(40):14107-13. PubMed ID: 25259478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molten salt synthesis of carbon-supported Pt-rare earth metal nanoalloy catalysts for oxygen reduction reaction.
    Jiang Y; Fu T; Liu J; Zhao J; Li B; Chen Z
    RSC Adv; 2022 Feb; 12(8):4805-4812. PubMed ID: 35425521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic combustion of methane over commercial catalysts in presence of ammonia and hydrogen sulphide.
    Hurtado P; Ordóñez S; Vega A; Díez FV
    Chemosphere; 2004 May; 55(5):681-9. PubMed ID: 15013673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of element distributions in an MSW ash melting treatment system.
    Sekito T; Dote Y; Onoue K; Sakanakura H; Nakamura K
    Waste Manag; 2014 Sep; 34(9):1637-43. PubMed ID: 24863626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skeletal Ni Catalysts Prepared from Amorphous Ni-Zr Alloys: Enhanced Catalytic Performance for Hydrogen Generation from Ammonia Borane.
    Nozaki A; Tanihara Y; Kuwahara Y; Ohmichi T; Mori K; Nagase T; Yasuda HY; Yamashita H
    Chemphyschem; 2016 Feb; 17(3):412-7. PubMed ID: 26663589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen production
    Harun K; Adhikari S; Jahromi H
    RSC Adv; 2020 Nov; 10(67):40882-40893. PubMed ID: 35519216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overall Carbon-neutral Electrochemical Reduction of CO
    Jing S; Sheng R; Liang X; Gu D; Peng Y; Xiao J; Shen Y; Hu D; Xiao W
    Angew Chem Int Ed Engl; 2023 Feb; 62(6):e202216315. PubMed ID: 36478510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro- and nano-spheres of low melting point metals and alloys, formed by ultrasonic cavitation.
    Friedman H; Reich S; Popovitz-Biro R; von Huth P; Halevy I; Koltypin Y; Gedanken A; Porat Z
    Ultrason Sonochem; 2013 Jan; 20(1):432-44. PubMed ID: 22959958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane.
    Han JW; Kim C; Park JS; Lee H
    ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Temperature Multielement Fusible Alloy-Based Molten Sodium Batteries for Grid-Scale Energy Storage.
    Ding Y; Guo X; Qian Y; Yu G
    ACS Cent Sci; 2020 Dec; 6(12):2287-2293. PubMed ID: 33376789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-Principles Design of Hydrogen Dissociation Catalysts Based on Isoelectronic Metal Solid Solutions.
    Seo DH; Shin H; Kang K; Kim H; Han SS
    J Phys Chem Lett; 2014 Jun; 5(11):1819-24. PubMed ID: 26273859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and validation of a ReaxFF reactive force field for Fe/Al/Ni alloys: molecular dynamics study of elastic constants, diffusion, and segregation.
    Shin YK; Kwak H; Zou C; Vasenkov AV; van Duin AC
    J Phys Chem A; 2012 Dec; 116(49):12163-74. PubMed ID: 23167515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hollow core-shell structured Ni-Sn@C nanoparticles: a novel electrocatalyst for the hydrogen evolution reaction.
    Lang L; Shi Y; Wang J; Wang FB; Xia XH
    ACS Appl Mater Interfaces; 2015 May; 7(17):9098-102. PubMed ID: 25871787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ternary NiMo-Bi liquid alloy catalyst for efficient hydrogen production from methane pyrolysis.
    Chen L; Song Z; Zhang S; Chang CK; Chuang YC; Peng X; Dun C; Urban JJ; Guo J; Chen JL; Prendergast D; Salmeron M; Somorjai GA; Su J
    Science; 2023 Aug; 381(6660):857-861. PubMed ID: 37616342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.