These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 29146977)

  • 1. Hydrogen Adsorption on Nearly Zigzag-Edged Nanoribbons: A Density Functional Theory Study.
    Mananghaya MR; Santos GN; Yu D; Stampfl C
    Sci Rep; 2017 Nov; 7(1):15727. PubMed ID: 29146977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Edge-decorated graphene nanoribbons by scandium as hydrogen storage media.
    Wu M; Gao Y; Zhang Z; Zeng XC
    Nanoscale; 2012 Feb; 4(3):915-20. PubMed ID: 22218647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-Surface Synthesis of NBN-Doped Zigzag-Edged Graphene Nanoribbons.
    Fu Y; Yang H; Gao Y; Huang L; Berger R; Liu J; Lu H; Cheng Z; Du S; Gao HJ; Feng X
    Angew Chem Int Ed Engl; 2020 Jun; 59(23):8873-8879. PubMed ID: 32134547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spin gapless semiconductor-metal-half-metal properties in nitrogen-doped zigzag graphene nanoribbons.
    Li Y; Zhou Z; Shen P; Chen Z
    ACS Nano; 2009 Jul; 3(7):1952-8. PubMed ID: 19555066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges.
    Wu S; Liu B; Shen C; Li S; Huang X; Lu X; Chen P; Wang G; Wang D; Liao M; Zhang J; Zhang T; Wang S; Yang W; Yang R; Shi D; Watanabe K; Taniguchi T; Yao Y; Wang W; Zhang G
    Phys Rev Lett; 2018 May; 120(21):216601. PubMed ID: 29883135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons.
    Blackwell RE; Zhao F; Brooks E; Zhu J; Piskun I; Wang S; Delgado A; Lee YL; Louie SG; Fischer FR
    Nature; 2021 Dec; 600(7890):647-652. PubMed ID: 34937899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magneto-electronic properties of graphene nanoribbons with various edge structures passivated by phosphorus and hydrogen atoms.
    Yu ZL; Wang D; Zhu Z; Zhang ZH
    Phys Chem Chem Phys; 2015 Oct; 17(37):24020-8. PubMed ID: 26313414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-Surface Synthesis of Edge-Extended Zigzag Graphene Nanoribbons.
    Kinikar A; Xu X; Giovannantonio MD; Gröning O; Eimre K; Pignedoli CA; Müllen K; Narita A; Ruffieux P; Fasel R
    Adv Mater; 2023 Nov; 35(48):e2306311. PubMed ID: 37795919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scandium Decoration of Boron Doped Porous Graphene for High-Capacity Hydrogen Storage.
    Wang J; Chen Y; Yuan L; Zhang M; Zhang C
    Molecules; 2019 Jun; 24(13):. PubMed ID: 31252605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From zigzag to armchair: the energetic stability, electronic and magnetic properties of chiral graphene nanoribbons with hydrogen-terminated edges.
    Sun L; Wei P; Wei J; Sanvito S; Hou S
    J Phys Condens Matter; 2011 Oct; 23(42):425301. PubMed ID: 21969127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of Raman g-peak split for graphene nanoribbons with hydrogen-terminated zigzag edges.
    Yang R; Shi Z; Zhang L; Shi D; Zhang G
    Nano Lett; 2011 Oct; 11(10):4083-8. PubMed ID: 21899347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topological Structure Realized in Cove-Edged Graphene Nanoribbons via Incorporation of Periodic Pentagon Rings.
    Zhu X; Li K; Liu J; Wang Z; Ding Z; Su Y; Yang B; Yan K; Li G; Yu P
    J Am Chem Soc; 2024 Mar; 146(11):7152-7158. PubMed ID: 38421279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetism in Nonplanar Zigzag Edge Termini of Graphene Nanoribbons.
    Xu X; Sun K; Ishikawa A; Narita A; Kawai S
    Angew Chem Int Ed Engl; 2023 Jun; 62(24):e202302534. PubMed ID: 36929312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct experimental determination of onset of electron-electron interactions in gap opening of zigzag graphene nanoribbons.
    Li YY; Chen MX; Weinert M; Li L
    Nat Commun; 2014 Jul; 5():4311. PubMed ID: 24986261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic and magnetic properties and structural stability of BeO sheet and nanoribbons.
    Wu W; Lu P; Zhang Z; Guo W
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4787-95. PubMed ID: 22039765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preferential functionalization on zigzag graphene nanoribbons: first-principles calculations.
    Lee H
    J Phys Condens Matter; 2010 Sep; 22(35):352205. PubMed ID: 21403278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons.
    Ritter KA; Lyding JW
    Nat Mater; 2009 Mar; 8(3):235-42. PubMed ID: 19219032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SAM-like arrangement of thiolated graphene nanoribbons: decoupling the edge state from the metal substrate.
    Cabrera-Sanfelix P; Arnau A; Sánchez-Portal D
    Phys Chem Chem Phys; 2013 Mar; 15(9):3233-42. PubMed ID: 23344647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical origins of weak H2 binding on carbon nanostructures: insight from ab initio studies of chemically functionalized graphene nanoribbons.
    Ulman K; Bhaumik D; Wood BC; Narasimhan S
    J Chem Phys; 2014 May; 140(17):174708. PubMed ID: 24811656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons.
    Magda GZ; Jin X; Hagymási I; Vancsó P; Osváth Z; Nemes-Incze P; Hwang C; Biró LP; Tapasztó L
    Nature; 2014 Oct; 514(7524):608-11. PubMed ID: 25355361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.