These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29147027)

  • 21. Attachment of micro- and nano-particles on tipless cantilevers for colloidal probe microscopy.
    D'Sa DJ; Chan HK; Chrzanowski W
    J Colloid Interface Sci; 2014 Jul; 426():190-8. PubMed ID: 24863782
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrodynamic resettability for a microfluidic particulate-based arraying system.
    Sochol RD; Dueck ME; Li S; Lee LP; Lin L
    Lab Chip; 2012 Dec; 12(23):5051-6. PubMed ID: 23042508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A colloidal model system with an interaction tunable from hard sphere to soft and dipolar.
    Yethiraj A; van Blaaderen A
    Nature; 2003 Jan; 421(6922):513-7. PubMed ID: 12556887
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An efficient method for the creation of tunable optical line traps via control of gradient and scattering forces.
    Tietjen GT; Kong Y; Parthasarathy R
    Opt Express; 2008 Jul; 16(14):10341-8. PubMed ID: 18607444
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient Low Shear Flow-based Trapping of Biological Entities.
    Sohrabi Kashani A; Packirisamy M
    Sci Rep; 2019 Apr; 9(1):5511. PubMed ID: 30940862
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Force interactions between Yersiniae lipopolysaccharides and monoclonal antibodies: An optical tweezers study.
    Konyshev I; Byvalov A; Ananchenko B; Fakhrullin R; Danilushkina A; Dudina L
    J Biomech; 2020 Jan; 99():109504. PubMed ID: 31753213
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical tweezing using tunable optical lattices along a few-mode silicon waveguide.
    Pin C; Jager JB; Tardif M; Picard E; Hadji E; de Fornel F; Cluzel B
    Lab Chip; 2018 Jun; 18(12):1750-1757. PubMed ID: 29774333
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tomographic active optical trapping of arbitrarily shaped objects by exploiting 3D refractive index maps.
    Kim K; Park Y
    Nat Commun; 2017 May; 8():15340. PubMed ID: 28530232
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mass-manufacturable polymer microfluidic device for dual fiber optical trapping.
    De Coster D; Ottevaere H; Vervaeke M; Van Erps J; Callewaert M; Wuytens P; Simpson SH; Hanna S; De Malsche W; Thienpont H
    Opt Express; 2015 Nov; 23(24):30991-1009. PubMed ID: 26698730
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Giant optical manipulation.
    Shvedov VG; Rode AV; Izdebskaya YV; Desyatnikov AS; Krolikowski W; Kivshar YS
    Phys Rev Lett; 2010 Sep; 105(11):118103. PubMed ID: 20867612
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing the micro-rheological properties of aerosol particles using optical tweezers.
    Power RM; Reid JP
    Rep Prog Phys; 2014 Jul; 77(7):074601. PubMed ID: 24994710
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computer simulation on the collision-sticking dynamics of two colloidal particles in an optical trap.
    Xu S; Sun Z
    J Chem Phys; 2007 Apr; 126(14):144903. PubMed ID: 17444739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toward optical-tweezers-based force microscopy for airborne microparticles.
    Power RM; Burnham DR; Reid JP
    Appl Opt; 2014 Dec; 53(36):8522-34. PubMed ID: 25608202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-Beam Acoustic Trapping of Red Blood Cells and Polystyrene Microspheres in Flowing Red Blood Cell Saline and Plasma Suspensions.
    Liu HC; Li Y; Chen R; Jung H; Shung KK
    Ultrasound Med Biol; 2017 Apr; 43(4):852-859. PubMed ID: 28236533
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Jamming phase diagram for attractive particles.
    Trappe V; Prasad V; Cipelletti L; Segre PN; Weitz DA
    Nature; 2001 Jun; 411(6839):772-5. PubMed ID: 11459050
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials.
    Serey X; Mandal S; Erickson D
    Nanotechnology; 2010 Jul; 21(30):305202. PubMed ID: 20603537
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers.
    Farré A; van der Horst A; Blab GA; Downing BP; Forde NR
    J Biophotonics; 2010 Apr; 3(4):224-33. PubMed ID: 20151444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermal gradient induced tweezers for the manipulation of particles and cells.
    Chen J; Cong H; Loo J; Kang Z; Tang M; Zhang H; Wu SY; Kong SK; Ho HP
    Sci Rep; 2016 Nov; 6():35814. PubMed ID: 27853191
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Manipulating and assembling metallic beads with Optoelectronic Tweezers.
    Zhang S; Juvert J; Cooper JM; Neale SL
    Sci Rep; 2016 Sep; 6():32840. PubMed ID: 27599445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.