These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29147144)

  • 1. Effects of spectral smearing of stimuli on the performance of auditory steady-state response-based brain-computer interface.
    Hwang JH; Nam KW; Jang DP; Kim IY
    Cogn Neurodyn; 2017 Dec; 11(6):515-527. PubMed ID: 29147144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of degree and symmetricity of bilateral spectral smearing, carrier frequency, and subject sex on amplitude of evoked auditory steady-state response signal.
    Hwang JH; Nam KW; Jang DP; Kim IY
    Cogn Neurodyn; 2019 Apr; 13(2):151-160. PubMed ID: 30956719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of spectral smearing and temporal fine structure degradation on speech masking release.
    Gnansia D; Péan V; Meyer B; Lorenzi C
    J Acoust Soc Am; 2009 Jun; 125(6):4023-33. PubMed ID: 19507983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel hybrid auditory BCI paradigm combining ASSR and P300.
    Kaongoen N; Jo S
    J Neurosci Methods; 2017 Mar; 279():44-51. PubMed ID: 28109832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Instant Donning Multi-Channel EEG Headset (with Comb-Shaped Dry Electrodes) and BCI Applications.
    Kim J; Lee J; Han C; Park K
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.
    Baek HJ; Kim HS; Heo J; Lim YG; Park KS
    J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A vision-free brain-computer interface (BCI) paradigm based on auditory selective attention.
    Kim DW; Cho JH; Hwang HJ; Lim JH; Im CH
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3684-7. PubMed ID: 22255139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Music and natural sounds in an auditory steady-state response based brain-computer interface to increase user acceptance.
    Heo J; Baek HJ; Hong S; Chang MH; Lee JS; Park KS
    Comput Biol Med; 2017 May; 84():45-52. PubMed ID: 28342407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of selective attention to auditory stimuli: toward vision-free brain-computer interfacing.
    Kim DW; Hwang HJ; Lim JH; Lee YH; Jung KY; Im CH
    J Neurosci Methods; 2011 Apr; 197(1):180-5. PubMed ID: 21335029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory steady-state responses to bone conduction stimuli in children with hearing loss.
    Swanepoel de W; Ebrahim S; Friedland P; Swanepoel A; Pottas L
    Int J Pediatr Otorhinolaryngol; 2008 Dec; 72(12):1861-71. PubMed ID: 18963045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEG auditory steady state responses classification for the novel BCI.
    Higashi H; Rutkowski TM; Washizawa Y; Cichocki A; Tanaka T
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4576-9. PubMed ID: 22255356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Examining sensory ability, feature matching and assessment-based adaptation for a brain-computer interface using the steady-state visually evoked potential.
    Brumberg JS; Nguyen A; Pitt KM; Lorenz SD
    Disabil Rehabil Assist Technol; 2019 Apr; 14(3):241-249. PubMed ID: 29385839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Background Music on Objective and Subjective Performance Measures in an Auditory BCI.
    Zhou S; Allison BZ; Kübler A; Cichocki A; Wang X; Jin J
    Front Comput Neurosci; 2016; 10():105. PubMed ID: 27790111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a method of simulating reduced frequency selectivity.
    Moore BC; Glasberg BR; Simpson A
    J Acoust Soc Am; 1992 Jun; 91(6):3402-23. PubMed ID: 1619117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of spectral smearing on performance of the spectral ripple and spectro-temporal ripple tests.
    Narne VK; Sharma M; Van Dun B; Bansal S; Prabhu L; Moore BC
    J Acoust Soc Am; 2016 Dec; 140(6):4298. PubMed ID: 28039998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Transient Target Stimuli in a Steady-State Somatosensory Evoked Potential-Based Brain-Computer Interface Setup.
    Pokorny C; Breitwieser C; Müller-Putz GR
    Front Neurosci; 2016; 10():152. PubMed ID: 27092051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Auditory Steady-State Response Using an Optimized Chirp Stimulus-Evoked Paradigm.
    Liu X; Liu S; Guo D; Sheng Y; Ke Y; An X; He F; Ming D
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30759874
    [No Abstract]   [Full Text] [Related]  

  • 18. Word recognition for temporally and spectrally distorted materials: the effects of age and hearing loss.
    Smith SL; Pichora-Fuller MK; Wilson RH; Macdonald EN
    Ear Hear; 2012; 33(3):349-66. PubMed ID: 22343546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the Performance of an Auditory Brain-Computer Interface Using Virtual Sound Sources by Shortening Stimulus Onset Asynchrony.
    Sugi M; Hagimoto Y; Nambu I; Gonzalez A; Takei Y; Yano S; Hokari H; Wada Y
    Front Neurosci; 2018; 12():108. PubMed ID: 29535602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Threshold prediction using the auditory steady-state response and the tone burst auditory brain stem response: a within-subject comparison.
    Johnson TA; Brown CJ
    Ear Hear; 2005 Dec; 26(6):559-76. PubMed ID: 16377993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.