These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 29147498)

  • 1. Reduction rate as a quantitative knob for achieving deterministic synthesis of colloidal metal nanocrystals.
    Yang TH; Gilroy KD; Xia Y
    Chem Sci; 2017 Oct; 8(10):6730-6749. PubMed ID: 29147498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Reduction Kinetics to Control and Predict the Outcome of a Colloidal Synthesis of Noble-Metal Nanocrystals.
    Nguyen QN; Chen R; Lyu Z; Xia Y
    Inorg Chem; 2021 Feb; ():. PubMed ID: 33522790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autocatalytic surface reduction and its role in controlling seed-mediated growth of colloidal metal nanocrystals.
    Yang TH; Zhou S; Gilroy KD; Figueroa-Cosme L; Lee YH; Wu JM; Xia Y
    Proc Natl Acad Sci U S A; 2017 Dec; 114(52):13619-13624. PubMed ID: 29229860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of reduction rate as a quantitative knob for controlling the twin structure and shape of palladium nanocrystals.
    Wang Y; Peng HC; Liu J; Huang CZ; Xia Y
    Nano Lett; 2015 Feb; 15(2):1445-50. PubMed ID: 25629786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?
    Xia Y; Xiong Y; Lim B; Skrabalak SE
    Angew Chem Int Ed Engl; 2009; 48(1):60-103. PubMed ID: 19053095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic Technology: Uncovering the Mechanisms of Nanocrystal Nucleation and Growth.
    Lignos I; Maceiczyk R; deMello AJ
    Acc Chem Res; 2017 May; 50(5):1248-1257. PubMed ID: 28467055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diorganyl dichalcogenides as useful synthons for colloidal semiconductor nanocrystals.
    Brutchey RL
    Acc Chem Res; 2015 Nov; 48(11):2918-26. PubMed ID: 26545235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications.
    Zhang H; Jin M; Xiong Y; Lim B; Xia Y
    Acc Chem Res; 2013 Aug; 46(8):1783-94. PubMed ID: 23163781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bimetallic Nanocrystals: Syntheses, Properties, and Applications.
    Gilroy KD; Ruditskiy A; Peng HC; Qin D; Xia Y
    Chem Rev; 2016 Sep; 116(18):10414-72. PubMed ID: 27367000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products.
    Xia Y; Xia X; Peng HC
    J Am Chem Soc; 2015 Jul; 137(25):7947-66. PubMed ID: 26020837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Capping Agents and Their Roles in Shape-Controlled Synthesis of Colloidal Metal Nanocrystals.
    Yang TH; Shi Y; Janssen A; Xia Y
    Angew Chem Int Ed Engl; 2020 Sep; 59(36):15378-15401. PubMed ID: 31595609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth.
    Woehl TJ; Evans JE; Arslan I; Ristenpart WD; Browning ND
    ACS Nano; 2012 Oct; 6(10):8599-610. PubMed ID: 22957797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colloidal Metal Nanocrystals with Metastable Crystal Structures.
    Janssen A; Nguyen QN; Xia Y
    Angew Chem Int Ed Engl; 2021 May; 60(22):12192-12203. PubMed ID: 33476449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the mechanism of phase transformation of colloidal In2O3 nanocrystals.
    Hutfluss LN; Radovanovic PV
    J Am Chem Soc; 2015 Jan; 137(3):1101-8. PubMed ID: 25539013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward a Quantitative Understanding of the Reduction Pathways of a Salt Precursor in the Synthesis of Metal Nanocrystals.
    Yang TH; Peng HC; Zhou S; Lee CT; Bao S; Lee YH; Wu JM; Xia Y
    Nano Lett; 2017 Jan; 17(1):334-340. PubMed ID: 27960060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: the role of nucleation rate in size control of CoPt3 nanocrystals.
    Shevchenko EV; Talapin DV; Schnablegger H; Kornowski A; Festin O; Svedlindh P; Haase M; Weller H
    J Am Chem Soc; 2003 Jul; 125(30):9090-101. PubMed ID: 15369366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of Colloidal Metal Nanocrystals: A Comprehensive Review on the Reductants.
    Rodrigues TS; Zhao M; Yang TH; Gilroy KD; da Silva AGM; Camargo PHC; Xia Y
    Chemistry; 2018 Nov; 24(64):16944-16963. PubMed ID: 29923247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-Time Electron Microscopy of Nanocrystal Synthesis, Transformations, and Self-Assembly in Solution.
    Sutter P; Sutter E
    Acc Chem Res; 2021 Jan; 54(1):11-21. PubMed ID: 33315389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colloidal Synthesis of Metal Nanocrystals: From Asymmetrical Growth to Symmetry Breaking.
    Nguyen QN; Wang C; Shang Y; Janssen A; Xia Y
    Chem Rev; 2023 Apr; 123(7):3693-3760. PubMed ID: 36547384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.