These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 29147516)

  • 1. A new route to N-aromatic heterocycles from the hydrogenation of diesters in the presence of anilines.
    Shi Y; Kamer PCJ; Cole-Hamilton DJ; Harvie M; Baxter EF; Lim KJC; Pogorzelec P
    Chem Sci; 2017 Oct; 8(10):6911-6917. PubMed ID: 29147516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homogeneous catalytic hydrogenation of amides to amines.
    Coetzee J; Dodds DL; Klankermayer J; Brosinski S; Leitner W; Slawin AM; Cole-Hamilton DJ
    Chemistry; 2013 Aug; 19(33):11039-50. PubMed ID: 23794128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly versatile catalytic hydrogenation of carboxylic and carbonic acid derivatives using a Ru-triphos complex: molecular control over selectivity and substrate scope.
    vom Stein T; Meuresch M; Limper D; Schmitz M; Hölscher M; Coetzee J; Cole-Hamilton DJ; Klankermayer J; Leitner W
    J Am Chem Soc; 2014 Sep; 136(38):13217-25. PubMed ID: 25208046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards a general ruthenium-catalyzed hydrogenation of secondary and tertiary amides to amines.
    Cabrero-Antonino JR; Alberico E; Junge K; Junge H; Beller M
    Chem Sci; 2016 May; 7(5):3432-3442. PubMed ID: 29997838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogenation of carbon dioxide to methanol using a homogeneous ruthenium-Triphos catalyst: from mechanistic investigations to multiphase catalysis.
    Wesselbaum S; Moha V; Meuresch M; Brosinski S; Thenert KM; Kothe J; Stein TV; Englert U; Hölscher M; Klankermayer J; Leitner W
    Chem Sci; 2015 Jan; 6(1):693-704. PubMed ID: 30154993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The synthesis of amines by the homogeneous hydrogenation of secondary and primary amides.
    Núñez Magro AA; Eastham GR; Cole-Hamilton DJ
    Chem Commun (Camb); 2007 Aug; (30):3154-6. PubMed ID: 17653372
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Mocci R; Atzori L; Baratta W; De Luca L; Porcheddu A
    RSC Adv; 2023 Nov; 13(49):34847-34851. PubMed ID: 38035248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cobalt-catalysed reductive C-H alkylation of indoles using carboxylic acids and molecular hydrogen.
    Cabrero-Antonino JR; Adam R; Junge K; Beller M
    Chem Sci; 2017 Sep; 8(9):6439-6450. PubMed ID: 29163930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective N-alkylation of amines using nitriles under hydrogenation conditions: facile synthesis of secondary and tertiary amines.
    Ikawa T; Fujita Y; Mizusaki T; Betsuin S; Takamatsu H; Maegawa T; Monguchi Y; Sajiki H
    Org Biomol Chem; 2012 Jan; 10(2):293-304. PubMed ID: 22068239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and use of an asymmetric transfer hydrogenation catalyst based on iron(II) for the synthesis of enantioenriched alcohols and amines.
    Zuo W; Morris RH
    Nat Protoc; 2015 Feb; 10(2):241-57. PubMed ID: 25569331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailored Cobalt-Catalysts for Reductive Alkylation of Anilines with Carboxylic Acids under Mild Conditions.
    Liu W; Sahoo B; Spannenberg A; Junge K; Beller M
    Angew Chem Int Ed Engl; 2018 Sep; 57(36):11673-11677. PubMed ID: 30019810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formic acid dehydrogenation catalysed by ruthenium complexes bearing the tripodal ligands triphos and NP3.
    Mellone I; Peruzzini M; Rosi L; Mellmann D; Junge H; Beller M; Gonsalvi L
    Dalton Trans; 2013 Feb; 42(7):2495-501. PubMed ID: 23212285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TMSCl Promoted Direct Conversion of Cyclic Anhydrides to (Un)Symmetric-Diesters/Amide Esters.
    Johny M; Manikandan A; Rajendar G
    Chem Asian J; 2024 Feb; 19(3):e202301017. PubMed ID: 38098177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visible-Light-Enabled Direct Decarboxylative N-Alkylation.
    Nguyen VT; Nguyen VD; Haug GC; Vuong NTH; Dang HT; Arman HD; Larionov OV
    Angew Chem Int Ed Engl; 2020 May; 59(20):7921-7927. PubMed ID: 32050048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic N-Alkylation of Amines Using Carboxylic Acids and Molecular Hydrogen.
    Sorribes I; Cabrero-Antonino JR; Vicent C; Junge K; Beller M
    J Am Chem Soc; 2015 Oct; 137(42):13580-7. PubMed ID: 26484397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ruthenium-catalyzed alkylation of indoles with tertiary amines by oxidation of a sp3 C-H bond and Lewis acid catalysis.
    Wang MZ; Zhou CY; Wong MK; Che CM
    Chemistry; 2010 May; 16(19):5723-35. PubMed ID: 20391566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ruthenium-Catalyzed Modular Synthesis of Cyclic Tertiary Amines from Lactams.
    Westhues S; Meuresch M; Klankermayer J
    Angew Chem Int Ed Engl; 2016 Oct; 55(41):12841-4. PubMed ID: 27621152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial/enzymatic synthesis of chiral drug intermediates.
    Patel RN
    Adv Appl Microbiol; 2000; 47():33-78. PubMed ID: 12876794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhenium-Loaded TiO
    Toyao T; Siddiki SMAH; Morita Y; Kamachi T; Touchy AS; Onodera W; Kon K; Furukawa S; Ariga H; Asakura K; Yoshizawa K; Shimizu KI
    Chemistry; 2017 Oct; 23(59):14848-14859. PubMed ID: 28815903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Practical synthesis of optically active amino alcohols via asymmetric transfer hydrogenation of functionalized aromatic ketones.
    Watanabe M; Murata K; Ikariya T
    J Org Chem; 2002 Mar; 67(5):1712-5. PubMed ID: 11871912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.