BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 29147552)

  • 1. Peptide-based ambidextrous bifunctional gelator: applications in oil spill recovery and removal of toxic organic dyes for waste water management.
    Basu K; Nandi N; Mondal B; Dehsorkhi A; Hamley IW; Banerjee A
    Interface Focus; 2017 Dec; 7(6):20160128. PubMed ID: 29147552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide-Based Gel in Environmental Remediation: Removal of Toxic Organic Dyes and Hazardous Pb
    Mondal B; Bairagi D; Nandi N; Hansda B; Das KS; Edwards-Gayle CJC; Castelletto V; Hamley IW; Banerjee A
    Langmuir; 2020 Nov; 36(43):12942-12953. PubMed ID: 33078952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvent-Assisted Tyrosine-Based Dipeptide Forms Low-Molecular Weight Gel: Preparation and Its Potential Use in Dye Removal and Oil Spillage Separation from Water.
    Majumder L; Chatterjee M; Bera K; Maiti NC; Banerji B
    ACS Omega; 2019 Sep; 4(11):14411-14419. PubMed ID: 31528794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reusable Sugar-Based Gelator for Marine Oil-Spill Recovery and Waste Water Treatment.
    Khan M; Das S; Roy A; Roy S
    Langmuir; 2023 Jan; 39(2):899-908. PubMed ID: 36606755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dipeptide-based superhydrogel: Removal of toxic dyes and heavy metal ions from waste water.
    Nandi N; Baral A; Basu K; Roy S; Banerjee A
    Biopolymers; 2017 Jan; 108(1):. PubMed ID: 27403910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sugar-benzohydrazide based phase selective gelators for marine oil spill recovery and removal of dye from polluted water.
    Soundarajan K; Mohan Das T
    Carbohydr Res; 2019 Jul; 481():60-66. PubMed ID: 31252336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly and multifunctionality of peptide organogels: oil spill recovery, dye absorption and synthesis of conducting biomaterials.
    Chetia M; Debnath S; Chowdhury S; Chatterjee S
    RSC Adv; 2020 Jan; 10(9):5220-5233. PubMed ID: 35498311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toluene diisocyanate based phase-selective supramolecular oil gelator for effective removal of oil spills from polluted water.
    Wang Y; Wang Y; Yan X; Wu S; Shao L; Liu Y; Guo Z
    Chemosphere; 2016 Jun; 153():485-93. PubMed ID: 27035386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoarchitectonics with Positionally Isomeric Coumarin Carbamates: Structure-Gelation Study, F
    Raza R; Baildya N; Ghosh K
    Chempluschem; 2022 Sep; 87(9):e202200270. PubMed ID: 36109190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-functional organic gelator derived from phenyllactic acid for phenol removal and oil recovery.
    Sun HL; Chuai J; Wei H; Zhang X; Yu H
    J Hazard Mater; 2019 Mar; 366():46-53. PubMed ID: 30502572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Sugar-Based Gelator for Marine Oil-Spill Recovery.
    Vibhute AM; Muvvala V; Sureshan KM
    Angew Chem Int Ed Engl; 2016 Jun; 55(27):7782-5. PubMed ID: 26821611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reusable Solid-form Phase-Selective Organogelators for Rapid and Efficient Remediation of Crude Oil Spill.
    Zhang X; Ma K; Yu Z; Zhou J; Zhang C; Dai R
    Langmuir; 2024 Jan; 40(4):2091-2101. PubMed ID: 38227788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular phase-selective gelation by peptides bearing side-chain azobenzenes: effect of ultrasound and potential for dye removal and oil spill remediation.
    Bachl J; Oehm S; Mayr J; Cativiela C; Marrero-Tellado JJ; Díaz DD
    Int J Mol Sci; 2015 May; 16(5):11766-84. PubMed ID: 26006247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aluminum soap nanoparticles-lignin powder form phase-selective gelator as an efficient sorbent for oils/water separation.
    Cui S; Qi B; Liu H; Sun X; He R; Lian J; Li Y; Lu J; Bao M
    Chemosphere; 2023 Nov; 340():139803. PubMed ID: 37579821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Low-Molecular-Weight Gelator Composed of Pyrene and Fluorene Moieties for Effective Charge Transfer in Supramolecular Ambidextrous Gel.
    Reddy SMM; Dorishetty P; Augustine G; Deshpande AP; Ayyadurai N; Shanmugam G
    Langmuir; 2017 Nov; 33(47):13504-13514. PubMed ID: 29135262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monopeptide-Based Powder Gelators for Instant Phase-Selective Gelation of Aprotic Aromatics and for Toxic Dye Removal.
    Li Z; Luo Z; Zhou J; Ye Z; Ou GC; Huo Y; Yuan L; Zeng H
    Langmuir; 2020 Aug; 36(31):9090-9098. PubMed ID: 32698586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. (
    Vujičić NŠ; Makarević J; Popović J; Štefanić Z; Žinić M
    Gels; 2023 Oct; 9(11):. PubMed ID: 37998942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-dependent gel to gel transformation of a peptide based supramolecular gelator.
    Baral A; Basak S; Basu K; Dehsorkhi A; Hamley IW; Banerjee A
    Soft Matter; 2015 Jun; 11(24):4944-51. PubMed ID: 26016677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hydro/organo/hybrid gelator: a peptide lipid with turning aspartame head groups.
    Mukai M; Minamikawa H; Aoyagi M; Asakawa M; Shimizu T; Kogiso M
    J Colloid Interface Sci; 2013 Apr; 395():154-60. PubMed ID: 23394806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent gel from a self-assembling new chromophoric moiety containing azobenzene based tetraamide.
    Palui G; Banerjee A
    J Phys Chem B; 2008 Aug; 112(33):10107-15. PubMed ID: 18665630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.