These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 29147650)

  • 1. Mitochondria Associated MicroRNA Expression Profiling of Heart Failure.
    Wang X; Song C; Zhou X; Han X; Li J; Wang Z; Shang H; Liu Y; Cao H
    Biomed Res Int; 2017; 2017():4042509. PubMed ID: 29147650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological Silencing of MicroRNA-152 Prevents Pressure Overload-Induced Heart Failure.
    LaRocca TJ; Seeger T; Prado M; Perea-Gil I; Neofytou E; Mecham BH; Ameen M; Chang ACY; Pandey G; Wu JC; Karakikes I
    Circ Heart Fail; 2020 Mar; 13(3):e006298. PubMed ID: 32160771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of heart failure by minimally invasive aortic constriction in mice: reduced peroxisome proliferator-activated receptor γ coactivator levels and mitochondrial dysfunction.
    Faerber G; Barreto-Perreia F; Schoepe M; Gilsbach R; Schrepper A; Schwarzer M; Mohr FW; Hein L; Doenst T
    J Thorac Cardiovasc Surg; 2011 Feb; 141(2):492-500, 500.e1. PubMed ID: 20447656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiac-Specific Bdh1 Overexpression Ameliorates Oxidative Stress and Cardiac Remodeling in Pressure Overload-Induced Heart Failure.
    Uchihashi M; Hoshino A; Okawa Y; Ariyoshi M; Kaimoto S; Tateishi S; Ono K; Yamanaka R; Hato D; Fushimura Y; Honda S; Fukai K; Higuchi Y; Ogata T; Iwai-Kanai E; Matoba S
    Circ Heart Fail; 2017 Dec; 10(12):. PubMed ID: 29242353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of microRNA in metabolic shift during heart failure.
    Pinti MV; Hathaway QA; Hollander JM
    Am J Physiol Heart Circ Physiol; 2017 Jan; 312(1):H33-H45. PubMed ID: 27742689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rodent heart failure models do not reflect the human circulating microRNA signature in heart failure.
    Vegter EL; Ovchinnikova ES; Silljé HHW; Meems LMG; van der Pol A; van der Velde AR; Berezikov E; Voors AA; de Boer RA; van der Meer P
    PLoS One; 2017; 12(5):e0177242. PubMed ID: 28475616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MiR-1a-3p mitigates isoproterenol-induced heart failure by enhancing the expression of mitochondrial ND1 and COX1.
    He R; Ding C; Yin P; He L; Xu Q; Wu Z; Shi Y; Su L
    Exp Cell Res; 2019 May; 378(1):87-97. PubMed ID: 30853447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA-214 Is Upregulated in Heart Failure Patients and Suppresses XBP1-Mediated Endothelial Cells Angiogenesis.
    Duan Q; Yang L; Gong W; Chaugai S; Wang F; Chen C; Wang P; Zou MH; Wang DW
    J Cell Physiol; 2015 Aug; 230(8):1964-73. PubMed ID: 25656649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential regulation of microRNAs in end-stage failing hearts is associated with left ventricular assist device unloading.
    Barsanti C; Trivella MG; D'Aurizio R; El Baroudi M; Baumgart M; Groth M; Caruso R; Verde A; Botta L; Cozzi L; Pitto L
    Biomed Res Int; 2015; 2015():592512. PubMed ID: 25710008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cobalamin and folate protect mitochondrial and contractile functions in a murine model of cardiac pressure overload.
    Piquereau J; Moulin M; Zurlo G; Mateo P; Gressette M; Paul JL; Lemaire C; Ventura-Clapier R; Veksler V; Garnier A
    J Mol Cell Cardiol; 2017 Jan; 102():34-44. PubMed ID: 27876471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. microRNA-665 silencing improves cardiac function in rats with heart failure through activation of the cAMP signaling pathway.
    Lin B; Feng DG; Xu J
    J Cell Physiol; 2019 Aug; 234(8):13169-13181. PubMed ID: 30666648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNAs relate to early worsening of renal function in patients with acute heart failure.
    Bruno N; ter Maaten JM; Ovchinnikova ES; Vegter EL; Valente MA; van der Meer P; de Boer RA; van der Harst P; Schmitter D; Metra M; O'Connor CM; Ponikowski P; Teerlink JR; Cotter G; Davison B; Cleland JG; Givertz MM; Bloomfield DM; Dittrich HC; Pinto YM; van Veldhuisen DJ; Hillege HL; Berezikov E; Voors AA
    Int J Cardiol; 2016 Jan; 203():564-9. PubMed ID: 26569364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative post-translational modifications develop LONP1 dysfunction in pressure overload heart failure.
    Hoshino A; Okawa Y; Ariyoshi M; Kaimoto S; Uchihashi M; Fukai K; Iwai-Kanai E; Matoba S
    Circ Heart Fail; 2014 May; 7(3):500-9. PubMed ID: 24740269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metformin improves cardiac function in mice with heart failure after myocardial infarction by regulating mitochondrial energy metabolism.
    Sun D; Yang F
    Biochem Biophys Res Commun; 2017 Apr; 486(2):329-335. PubMed ID: 28302481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac-specific overexpression of miR-122 induces mitochondria-dependent cardiomyocyte apoptosis and promotes heart failure by inhibiting Hand2.
    Shi Y; Zhang Z; Yin Q; Fu C; Barszczyk A; Zhang X; Wang J; Yang D
    J Cell Mol Med; 2021 Jun; 25(11):5326-5334. PubMed ID: 33942477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure.
    Thum T; Galuppo P; Wolf C; Fiedler J; Kneitz S; van Laake LW; Doevendans PA; Mummery CL; Borlak J; Haverich A; Gross C; Engelhardt S; Ertl G; Bauersachs J
    Circulation; 2007 Jul; 116(3):258-67. PubMed ID: 17606841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential microRNA Expression and Regulation in the Rat Model of Post-Infarction Heart Failure.
    Liu X; Meng H; Jiang C; Yang S; Cui F; Yang P
    PLoS One; 2016; 11(8):e0160920. PubMed ID: 27504893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transcardiac gradient of cardio-microRNAs in the failing heart.
    Marques FZ; Vizi D; Khammy O; Mariani JA; Kaye DM
    Eur J Heart Fail; 2016 Aug; 18(8):1000-8. PubMed ID: 27072074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adrenergic Repression of the Epigenetic Reader MeCP2 Facilitates Cardiac Adaptation in Chronic Heart Failure.
    Mayer SC; Gilsbach R; Preissl S; Monroy Ordonez EB; Schnick T; Beetz N; Lother A; Rommel C; Ihle H; Bugger H; Rühle F; Schrepper A; Schwarzer M; Heilmann C; Bönisch U; Gupta SK; Wilpert J; Kretz O; von Elverfeldt D; Orth J; Aktories K; Beyersdorf F; Bode C; Stiller B; Krüger M; Thum T; Doenst T; Stoll M; Hein L
    Circ Res; 2015 Sep; 117(7):622-33. PubMed ID: 26195221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering the microRNA signature of pathological cardiac hypertrophy by engineered heart tissue- and sequencing-technology.
    Hirt MN; Werner T; Indenbirken D; Alawi M; Demin P; Kunze AC; Stenzig J; Starbatty J; Hansen A; Fiedler J; Thum T; Eschenhagen T
    J Mol Cell Cardiol; 2015 Apr; 81():1-9. PubMed ID: 25633833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.