These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29147837)

  • 1. Development of SAAP3D force field and the application to replica-exchange Monte Carlo simulation for chignolin and C-peptide.
    Iwaoka M; Suzuki T; Shoji Y; Dedachi K; Shimosato T; Minezaki T; Hojo H; Onuki H; Hirota H
    J Comput Aided Mol Des; 2017 Dec; 31(12):1039-1052. PubMed ID: 29147837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of a Distance-Dependent Sigmoidal Dielectric Constant to the REMC/SAAP3D Simulations of Chignolin, Trp-Cage, and the G10q Mutant.
    Iwaoka M; Yoshida K; Shimosato T
    Protein J; 2020 Oct; 39(5):402-410. PubMed ID: 33108545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The SAAP force field: development of the single amino acid potentials for 20 proteinogenic amino acids and Monte Carlo molecular simulation for short peptides.
    Iwaoka M; Kimura N; Yosida D; Minezaki T
    J Comput Chem; 2009 Oct; 30(13):2039-55. PubMed ID: 19140140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of isothermal-isobaric replica-permutation method for molecular dynamics and Monte Carlo simulations and its application to reveal temperature and pressure dependence of folded, misfolded, and unfolded states of chignolin.
    Yamauchi M; Okumura H
    J Chem Phys; 2017 Nov; 147(18):184107. PubMed ID: 29141431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The SAAP force field. A simple approach to a new all-atom protein force field by using single amino acid potential (SAAP) functions in various solvents.
    Iwaoka M; Tomoda S
    J Comput Chem; 2003 Jul; 24(10):1192-200. PubMed ID: 12820126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the roles of amino acid residues in tertiary structure formation of chignolin by using molecular dynamics simulation.
    Terada T; Satoh D; Mikawa T; Ito Y; Shimizu K
    Proteins; 2008 Nov; 73(3):621-31. PubMed ID: 18473359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of two different force fields on structural and thermodynamics character of H1 peptide via molecular dynamics simulations.
    Cao Z; Wang J
    J Biomol Struct Dyn; 2010 Apr; 27(5):651-61. PubMed ID: 20085382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force-field dependence of chignolin folding and misfolding: comparison with experiment and redesign.
    Kührová P; De Simone A; Otyepka M; Best RB
    Biophys J; 2012 Apr; 102(8):1897-906. PubMed ID: 22768946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polypeptide folding using Monte Carlo sampling, concerted rotation, and continuum solvation.
    Ulmschneider JP; Jorgensen WL
    J Am Chem Soc; 2004 Feb; 126(6):1849-57. PubMed ID: 14871118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The CLN025 decapeptide retains a β-hairpin conformation in urea and guanidinium chloride.
    Hatfield MP; Murphy RF; Lovas S
    J Phys Chem B; 2011 May; 115(17):4971-81. PubMed ID: 21480621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature and pressure denaturation of chignolin: folding and unfolding simulation by multibaric-multithermal molecular dynamics method.
    Okumura H
    Proteins; 2012 Oct; 80(10):2397-416. PubMed ID: 22641605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulations of beta-hairpin folding at constant temperature.
    Sung SS
    Biophys J; 1999 Jan; 76(1 Pt 1):164-75. PubMed ID: 9876131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replica sub-permutation method for molecular dynamics and monte carlo simulations.
    Yamauchi M; Okumura H
    J Comput Chem; 2019 Dec; 40(31):2694-2711. PubMed ID: 31365132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible folding simulation by hybrid Hamiltonian replica exchange.
    Xu W; Lai T; Yang Y; Mu Y
    J Chem Phys; 2008 May; 128(17):175105. PubMed ID: 18465944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation of a design peptide between the α-helix and β-hairpin structures using a helix-strand replica-exchange molecular dynamics simulation.
    Okumura H; Itoh SG
    Phys Chem Chem Phys; 2013 Sep; 15(33):13852-61. PubMed ID: 23839056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct folding simulation of alpha-helices and beta-hairpins based on a single all-atom force field with an implicit solvation model.
    Jang S; Kim E; Pak Y
    Proteins; 2007 Jan; 66(1):53-60. PubMed ID: 17063490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of a beta-hairpin fragment of protein G: balance between side-chain and backbone forces.
    Ma B; Nussinov R
    J Mol Biol; 2000 Mar; 296(4):1091-104. PubMed ID: 10686106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Maximum-Likelihood Approach to Force-Field Calibration.
    Zaborowski B; Jagieła D; Czaplewski C; Hałabis A; Lewandowska A; Żmudzińska W; Ołdziej S; Karczyńska A; Omieczynski C; Wirecki T; Liwo A
    J Chem Inf Model; 2015 Sep; 55(9):2050-70. PubMed ID: 26263302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the conformation of folding initiation sites in proteins by computer simulation.
    Avbelj F; Moult J
    Proteins; 1995 Oct; 23(2):129-41. PubMed ID: 8592695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alpha-helix folding by Monte Carlo simulated annealing in isolated C-peptide of ribonuclease A.
    Okamoto Y; Fukugita M; Nakazawa T; Kawai H
    Protein Eng; 1991 Aug; 4(6):639-47. PubMed ID: 1946321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.