These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29148282)

  • 1. Macrocarpal C isolated from Eucalyptus globulus inhibits dipeptidyl peptidase 4 in an aggregated form.
    Kato E; Kawakami K; Kawabata J
    J Enzyme Inhib Med Chem; 2018 Dec; 33(1):106-109. PubMed ID: 29148282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Studies on chemical constituents in fruits of Eucalyptus globulus].
    Yang XW; Guo QM
    Zhongguo Zhong Yao Za Zhi; 2007 Mar; 32(6):496-500. PubMed ID: 17552153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semisynthesis of macrocarpal C and analogues by selective dehydration of macrocarpal A or B.
    Alliot J; Gravel E; Larquetoux L; Nicolas M; Doris E
    J Nat Prod; 2013 Dec; 76(12):2346-9. PubMed ID: 24261967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eucalyptone from Eucalyptus globulus.
    Osawa K; Yasuda H; Morita H; Takeya K; Itokawa H
    Phytochemistry; 1995 Sep; 40(1):183-4. PubMed ID: 7546549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Euglobal-In-1, a new euglobal from Eucalyptus incrassata.
    Takasaki M; Konoshima T; Kozuka M; Haruna M; Ito K; Crow WD; Paton DM
    Chem Pharm Bull (Tokyo); 1994 Oct; 42(10):2113-6. PubMed ID: 7805137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macrocarpals H, I, and J from the Leaves of Eucalyptus globulus.
    Osawa K; Yasuda H; Morita H; Takeya K; Itokawa H
    J Nat Prod; 1996 Sep; 59(9):823-7. PubMed ID: 8864235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tyrosinase inhibitors from the leaves of Eucalyptus globulus.
    Lin QM; Wang Y; Yu JH; Liu YL; Wu X; He XR; Zhou ZW
    Fitoterapia; 2019 Nov; 139():104418. PubMed ID: 31704262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, synthesis and anti-diabetic activity of triazolotriazine derivatives as dipeptidyl peptidase-4 (DPP-4) inhibitors.
    Patel BD; Bhadada SV; Ghate MD
    Bioorg Chem; 2017 Jun; 72():345-358. PubMed ID: 28302310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent progress of the development of dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes mellitus.
    Li N; Wang LJ; Jiang B; Li XQ; Guo CL; Guo SJ; Shi DY
    Eur J Med Chem; 2018 May; 151():145-157. PubMed ID: 29609120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The discovery of novel 5,6,5- and 5,5,6-tricyclic pyrrolidines as potent and selective DPP-4 inhibitors.
    Cox JM; Chu HD; Kuethe JT; Gao YD; Scapin G; Eiermann G; He H; Li X; Lyons KA; Metzger J; Petrov A; Wu JK; Xu S; Sinha-Roy R; Weber AE; Biftu T
    Bioorg Med Chem Lett; 2016 Jun; 26(11):2622-6. PubMed ID: 27106708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dipeptidyl peptidase IV and its inhibitors: therapeutics for type 2 diabetes and what else?
    Juillerat-Jeanneret L
    J Med Chem; 2014 Mar; 57(6):2197-212. PubMed ID: 24099035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Features of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from dietary proteins.
    Nongonierma AB; FitzGerald RJ
    J Food Biochem; 2019 Jan; 43(1):e12451. PubMed ID: 31353485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and potent inhibitory activities of carboxybenzyl-substituted 8-(3-(R)-aminopiperidin-1-yl)-7-(2-chloro/cyanobenzyl)-3-methyl-3,7-dihydro-purine-2,6-diones as dipeptidyl peptidase IV (DPP-IV) inhibitors.
    Mo DW; Dong S; Sun H; Chen JS; Pang JX; Xi BM; Chen WH
    Bioorg Med Chem Lett; 2015 May; 25(9):1872-5. PubMed ID: 25838146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constituents of
    Kim BR; Paudel SB; Nam JW; Jin CH; Lee IS; Han AR
    Molecules; 2020 Sep; 25(19):. PubMed ID: 32977609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, Biological Evaluation, and QPLD Studies of Piperazine Derivatives as Potential DPP-IV Inhibitors.
    Khalaf RA; Jarad HA; Al-Qirim T; Sabbah D
    Med Chem; 2021; 17(9):937-944. PubMed ID: 32940185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of anthraquinones as DPP-IV inhibitors: Structure-activity relationships and inhibitory mechanism.
    Ma HH; Zhang J; Li CQ; Zou LW
    Fitoterapia; 2023 Jul; 168():105549. PubMed ID: 37244503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dipeptidyl peptidase IV Inhibitory activity of Terminalia arjuna attributes to its cardioprotective effects in experimental diabetes: In silico, in vitro and in vivo analyses.
    Mohanty IR; Borde M; Kumar C S; Maheshwari U
    Phytomedicine; 2019 Apr; 57():158-165. PubMed ID: 30668318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finding a Potential Dipeptidyl Peptidase-4 (DPP-4) Inhibitor for Type-2 Diabetes Treatment Based on Molecular Docking, Pharmacophore Generation, and Molecular Dynamics Simulation.
    Meduru H; Wang YT; Tsai JJ; Chen YC
    Int J Mol Sci; 2016 Jun; 17(6):. PubMed ID: 27304951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of novel human dipeptidyl peptidase-IV inhibitors of natural origin (Part II): in silico prediction in antidiabetic extracts.
    Guasch L; Sala E; Ojeda MJ; Valls C; Bladé C; Mulero M; Blay M; Ardévol A; Garcia-Vallvé S; Pujadas G
    PLoS One; 2012; 7(9):e44972. PubMed ID: 23028712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DPP-IV Inhibitory Potentials of Flavonol Glycosides Isolated from the Seeds of
    Kim BR; Kim HY; Choi I; Kim JB; Jin CH; Han AR
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30103438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.