BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 29148554)

  • 21. Investigation of gold nanoparticle radiosensitization mechanisms using a free radical scavenger and protons of different energies.
    Jeynes JC; Merchant MJ; Spindler A; Wera AC; Kirkby KJ
    Phys Med Biol; 2014 Nov; 59(21):6431-43. PubMed ID: 25296027
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modelling Spatial Scales of Dose Deposition and Radiolysis Products from Gold Nanoparticle Sensitisation of Proton Therapy in A Cell: From Intracellular Structures to Adjacent Cells.
    Peukert D; Kempson I; Douglass M; Bezak E
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32580352
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interplay between the gold nanoparticle sub-cellular localization, size, and the photon energy for radiosensitization.
    Lechtman E; Pignol JP
    Sci Rep; 2017 Oct; 7(1):13268. PubMed ID: 29038517
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Imaging and radiation effects of gold nanoparticles in tumour cells.
    McQuaid HN; Muir MF; Taggart LE; McMahon SJ; Coulter JA; Hyland WB; Jain S; Butterworth KT; Schettino G; Prise KM; Hirst DG; Botchway SW; Currell FJ
    Sci Rep; 2016 Jan; 6():19442. PubMed ID: 26787230
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gold nanoparticles as radiation sensitizers in cancer therapy.
    Chithrani DB; Jelveh S; Jalali F; van Prooijen M; Allen C; Bristow RG; Hill RP; Jaffray DA
    Radiat Res; 2010 Jun; 173(6):719-28. PubMed ID: 20518651
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the role of low-energy electrons in the radiosensitization of DNA by gold nanoparticles.
    Xiao F; Zheng Y; Cloutier P; He Y; Hunting D; Sanche L
    Nanotechnology; 2011 Nov; 22(46):465101. PubMed ID: 22024607
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms of Nanoscale Radiation Enhancement by Metal Nanoparticles: Role of Low Energy Electrons.
    Zheng Y; Sanche L
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36902132
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biological modeling of gold nanoparticle enhanced radiotherapy for proton therapy.
    Lin Y; McMahon SJ; Paganetti H; Schuemann J
    Phys Med Biol; 2015 May; 60(10):4149-68. PubMed ID: 25953956
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physical basis and biological mechanisms of gold nanoparticle radiosensitization.
    Butterworth KT; McMahon SJ; Currell FJ; Prise KM
    Nanoscale; 2012 Aug; 4(16):4830-8. PubMed ID: 22767423
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Local dose enhancement of proton therapy by ceramic oxide nanoparticles investigated with Geant4 simulations.
    McKinnon S; Guatelli S; Incerti S; Ivanchenko V; Konstantinov K; Corde S; Lerch M; Tehei M; Rosenfeld A
    Phys Med; 2016 Dec; 32(12):1584-1593. PubMed ID: 27916516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modelling the effect of incorporated halogenated pyrimidine on radiation-induced DNA strand breaks.
    Watanabe R; Nikjoo H
    Int J Radiat Biol; 2002 Nov; 78(11):953-66. PubMed ID: 12456283
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative investigation of physical factors contributing to gold nanoparticle-mediated proton dose enhancement.
    Cho J; Gonzalez-Lepera C; Manohar N; Kerr M; Krishnan S; Cho SH
    Phys Med Biol; 2016 Mar; 61(6):2562-81. PubMed ID: 26952844
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual Action Enhancement of Gold Nanoparticle Radiosensitization by Pentamidine in Triple Negative Breast Cancer.
    Her S; Cui L; Bristow RG; Allen C
    Radiat Res; 2016 May; 185(5):549-62. PubMed ID: 27135970
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A simulation study on the radiosensitization properties of gold nanorods.
    Taheri A; Khandaker MU; Moradi F; Bradley DA
    Phys Med Biol; 2024 Feb; 69(4):. PubMed ID: 38286017
    [No Abstract]   [Full Text] [Related]  

  • 35. Dependence of Gold Nanoparticle Radiosensitization on Functionalizing Layer Thickness.
    Spaas C; Dok R; Deschaume O; De Roo B; Vervaele M; Seo JW; Bartic C; Hoet P; Van den Heuvel F; Nuyts S; Locquet JP
    Radiat Res; 2016 Apr; 185(4):384-92. PubMed ID: 26950059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation into the effects of high-Z nano materials in proton therapy.
    Ahmad R; Royle G; Lourenço A; Schwarz M; Fracchiolla F; Ricketts K
    Phys Med Biol; 2016 Jun; 61(12):4537-50. PubMed ID: 27224304
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cross-Correlative Single-Cell Analysis Reveals Biological Mechanisms of Nanoparticle Radiosensitization.
    Turnbull T; Douglass M; Williamson NH; Howard D; Bhardwaj R; Lawrence M; Paterson DJ; Bezak E; Thierry B; Kempson IM
    ACS Nano; 2019 May; 13(5):5077-5090. PubMed ID: 31009200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monte Carlo Simulation of the Oxygen Effect in DNA Damage Induction by Ionizing Radiation.
    Forster JC; Douglass MJJ; Phillips WM; Bezak E
    Radiat Res; 2018 Sep; 190(3):248-261. PubMed ID: 29953346
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gold nanoparticles in combination with megavoltage radiation energy increased radiosensitization and apoptosis in colon cancer HT-29 cells.
    Saberi A; Shahbazi-Gahrouei D; Abbasian M; Fesharaki M; Baharlouei A; Arab-Bafrani Z
    Int J Radiat Biol; 2017 Mar; 93(3):315-323. PubMed ID: 27690719
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radiosensitization of ultrasmall GNP-PEG-cRGDfK in ALTS1C1 exposed to therapeutic protons and kilovoltage and megavoltage photons.
    Enferadi M; Fu SY; Hong JH; Tung CJ; Chao TC; Wey SP; Chiu CH; Wang CC; Sadeghi M
    Int J Radiat Biol; 2018 Feb; 94(2):124-136. PubMed ID: 29172866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.