These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 29148702)
1. Influence of Particle Geometry on Gastrointestinal Transit and Absorption following Oral Administration. Li D; Zhuang J; He H; Jiang S; Banerjee A; Lu Y; Wu W; Mitragotri S; Gan L; Qi J ACS Appl Mater Interfaces; 2017 Dec; 9(49):42492-42502. PubMed ID: 29148702 [TBL] [Abstract][Full Text] [Related]
2. Oral absorption of PEG-coated versus uncoated gold nanospheres: does agglomeration matter? Hinkley GK; Carpinone P; Munson JW; Powers KW; Roberts SM Part Fibre Toxicol; 2015 Mar; 12():9. PubMed ID: 25884802 [TBL] [Abstract][Full Text] [Related]
3. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. Banerjee A; Qi J; Gogoi R; Wong J; Mitragotri S J Control Release; 2016 Sep; 238():176-185. PubMed ID: 27480450 [TBL] [Abstract][Full Text] [Related]
4. Mesoporous silica nanorods for improved oral drug absorption. Zheng N; Li J; Xu C; Xu L; Li S; Xu L Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1132-1140. PubMed ID: 28783976 [TBL] [Abstract][Full Text] [Related]
5. Size-exclusive effect of nanostructured lipid carriers on oral drug delivery. Li H; Chen M; Su Z; Sun M; Ping Q Int J Pharm; 2016 Sep; 511(1):524-537. PubMed ID: 27452421 [TBL] [Abstract][Full Text] [Related]
6. Insight into the in vivo translocation of oral liposomes by fluorescence resonance energy transfer effect. Liu W; Li D; Dong Z; Liu K; He H; Lu Y; Wu W; Li Q; Gan L; Qi J Int J Pharm; 2020 Sep; 587():119682. PubMed ID: 32717284 [TBL] [Abstract][Full Text] [Related]
7. Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse. Maisel K; Ensign L; Reddy M; Cone R; Hanes J J Control Release; 2015 Jan; 197():48-57. PubMed ID: 25449804 [TBL] [Abstract][Full Text] [Related]
8. Mucoadhesion of polystyrene nanoparticles having surface hydrophilic polymeric chains in the gastrointestinal tract. Sakuma S; Sudo R; Suzuki N; Kikuchi H; Akashi M; Hayashi M Int J Pharm; 1999 Jan; 177(2):161-72. PubMed ID: 10205611 [TBL] [Abstract][Full Text] [Related]
9. Differential interferences with clinical chemistry assays by gold nanorods, and gold and silica nanospheres. Hinkley GK; Carpinone PL; Munson JW; Powers KW; Roberts SM Nanotoxicology; 2015 Feb; 9(1):116-25. PubMed ID: 24620736 [TBL] [Abstract][Full Text] [Related]
10. Exploring the translocation behaviours Hang L; Shen C; Xue Y; Wu W; Shen B; Yuan H J Drug Target; 2023 Mar; 31(3):278-285. PubMed ID: 36322516 [TBL] [Abstract][Full Text] [Related]
11. Gold-based nanospheres and nanorods particles used as theranostic agents: An in vitro and in vivo toxicology studies. Cancino-Bernardi J; Marangoni VS; Besson JCF; Cancino MEC; Natali MRM; Zucolotto V Chemosphere; 2018 Dec; 213():41-52. PubMed ID: 30212718 [TBL] [Abstract][Full Text] [Related]
12. Size-Dependent Translocation of Nanoemulsions via Oral Delivery. Xia F; Fan W; Jiang S; Ma Y; Lu Y; Qi J; Ahmad E; Dong X; Zhao W; Wu W ACS Appl Mater Interfaces; 2017 Jul; 9(26):21660-21672. PubMed ID: 28616962 [TBL] [Abstract][Full Text] [Related]
13. Impact of Microdevice Geometry on Transit and Retention in the Murine Gastrointestinal Tract. Lykins WR; Hansen ME; Sun X; Advincula R; Finbloom JA; Jain AK; Zala Y; Ma A; Desai TA ACS Biomater Sci Eng; 2023 Jun; 9(6):2891-2901. PubMed ID: 33914503 [TBL] [Abstract][Full Text] [Related]
14. Polyester-Solid Lipid Mixed Nanoparticles with Improved Stability in Gastro-Intestinal Tract Facilitated Oral Delivery of Larotaxel. Gou J; Feng S; Liang Y; Fang G; Zhang H; Yin T; Zhang Y; He H; Wang Y; Tang X Mol Pharm; 2017 Nov; 14(11):3750-3761. PubMed ID: 28945434 [TBL] [Abstract][Full Text] [Related]
15. Surface functional modification of self-assembled insulin nanospheres for improving intestinal absorption. Shi K; Fang Y; Kan Q; Zhao J; Gan Y; Liu Z Int J Biol Macromol; 2015 Mar; 74():49-60. PubMed ID: 25433129 [TBL] [Abstract][Full Text] [Related]
16. [Study on the preparation and bio-distribution of silybin lipid nanospheres]. Xu XM; Li Q; Zhu Y; Shen S; Shen Z; Yu JN Zhongguo Zhong Yao Za Zhi; 2005 Dec; 30(24):1912-4. PubMed ID: 16494021 [TBL] [Abstract][Full Text] [Related]
17. Gastrointestinal bioavailability of 2.0 nm diameter gold nanoparticles. Smith CA; Simpson CA; Kim G; Carter CJ; Feldheim DL ACS Nano; 2013 May; 7(5):3991-6. PubMed ID: 23600730 [TBL] [Abstract][Full Text] [Related]
18. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim. Sjögren E; Westergren J; Grant I; Hanisch G; Lindfors L; Lennernäs H; Abrahamsson B; Tannergren C Eur J Pharm Sci; 2013 Jul; 49(4):679-98. PubMed ID: 23727464 [TBL] [Abstract][Full Text] [Related]
19. Poly(d,l-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs. Dong Y; Feng SS Biomaterials; 2005 Oct; 26(30):6068-76. PubMed ID: 15894372 [TBL] [Abstract][Full Text] [Related]
20. Glucose-Based Mesoporous Carbon Nanospheres as Functional Carriers for Oral Delivery of Amphiphobic Raloxifene: Insights into the Bioavailability Enhancement and Lymphatic Transport. Ye Y; Zhang T; Li W; Sun H; Lu D; Wu B; Zhang X Pharm Res; 2016 Mar; 33(3):792-803. PubMed ID: 26553355 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]