BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 29148722)

  • 1. Acoustic Wave-Driven Functionalized Particles for Aptamer-Based Target Biomolecule Separation.
    Ahmad R; Destgeer G; Afzal M; Park J; Ahmed H; Jung JH; Park K; Yoon TS; Sung HJ
    Anal Chem; 2017 Dec; 89(24):13313-13319. PubMed ID: 29148722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustofluidic Separation of Proteins Using Aptamer-Functionalized Microparticles.
    Afzal M; Park J; Jeon JS; Akmal M; Yoon TS; Sung HJ
    Anal Chem; 2021 Jun; 93(23):8309-8317. PubMed ID: 34075739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Submicron separation of microspheres via travelling surface acoustic waves.
    Destgeer G; Ha BH; Jung JH; Sung HJ
    Lab Chip; 2014 Dec; 14(24):4665-72. PubMed ID: 25312065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustofluidic separation of proteins from platelets in human blood plasma using aptamer-functionalized microparticles.
    Lee SH; Cha B; Ko J; Afzal M; Park J
    Biomicrofluidics; 2023 Mar; 17(2):024105. PubMed ID: 37153865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation of 300 and 100 nm Particles in Fabry-Perot Acoustofluidic Resonators.
    Sehgal P; Kirby BJ
    Anal Chem; 2017 Nov; 89(22):12192-12200. PubMed ID: 29039191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Pumpless Acoustofluidic Platform for Size-Selective Concentration and Separation of Microparticles.
    Ahmed H; Destgeer G; Park J; Jung JH; Ahmad R; Park K; Sung HJ
    Anal Chem; 2017 Dec; 89(24):13575-13581. PubMed ID: 29156880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an aptamer-based impedimetric bioassay using microfluidic system and magnetic separation for protein detection.
    Wang Y; Ye Z; Ping J; Jing S; Ying Y
    Biosens Bioelectron; 2014 Sep; 59():106-11. PubMed ID: 24709326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detachable Acoustofluidic System for Particle Separation via a Traveling Surface Acoustic Wave.
    Ma Z; Collins DJ; Ai Y
    Anal Chem; 2016 May; 88(10):5316-23. PubMed ID: 27086552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microchannel anechoic corner for size-selective separation and medium exchange via traveling surface acoustic waves.
    Destgeer G; Ha BH; Park J; Jung JH; Alazzam A; Sung HJ
    Anal Chem; 2015 May; 87(9):4627-32. PubMed ID: 25800052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sheathless Focusing and Separation of Microparticles Using Tilted-Angle Traveling Surface Acoustic Waves.
    Ahmed H; Destgeer G; Park J; Afzal M; Sung HJ
    Anal Chem; 2018 Jul; 90(14):8546-8552. PubMed ID: 29911381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bifunctional combined aptamer for simultaneous separation and detection of thrombin.
    Bing T; Liu X; Cheng X; Cao Z; Shangguan D
    Biosens Bioelectron; 2010 Feb; 25(6):1487-92. PubMed ID: 19959350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface plasmon resonance spectroscopy study of interfacial binding of thrombin to antithrombin DNA aptamers.
    Tang Q; Su X; Loh KP
    J Colloid Interface Sci; 2007 Nov; 315(1):99-106. PubMed ID: 17689549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel.
    Choi S; Park JK
    Lab Chip; 2007 Jul; 7(7):890-7. PubMed ID: 17594009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner.
    Khan MS; Sahin MA; Destgeer G; Park J
    Ultrason Sonochem; 2022 Sep; 89():106161. PubMed ID: 36088893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the Affinity of Anti-Human α-Thrombin 15-mer DNA Aptamer and Anti-Immunoglobulin E Aptamer by PolyT Extension.
    Bai Y; Li Y; Zhang D; Wang H; Zhao Q
    Anal Chem; 2017 Sep; 89(17):9467-9473. PubMed ID: 28763192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle deflection in a poly(dimethylsiloxane) microchannel using a propagating surface acoustic wave: size and frequency dependence.
    Skowronek V; Rambach RW; Schmid L; Haase K; Franke T
    Anal Chem; 2013 Oct; 85(20):9955-9. PubMed ID: 24053589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using capillary electrophoresis to characterize polymeric particles.
    Riley KR; Liu S; Yu G; Libby K; Cubicciotti R; Colyer CL
    J Chromatogr A; 2016 Sep; 1463():169-75. PubMed ID: 27543386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly sensitive chemiluminescence biosensor for protein detection based on the functionalized magnetic microparticles and the hybridization chain reaction.
    Li N; Chen J; Luo M; Chen C; Ji X; He Z
    Biosens Bioelectron; 2017 Jan; 87():325-331. PubMed ID: 27573299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel.
    Nam J; Lim H; Kim D; Shin S
    Lab Chip; 2011 Oct; 11(19):3361-4. PubMed ID: 21842070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aptamer/thrombin/aptamer-AuNPs sandwich enhanced surface plasmon resonance sensor for the detection of subnanomolar thrombin.
    Bai Y; Feng F; Zhao L; Wang C; Wang H; Tian M; Qin J; Duan Y; He X
    Biosens Bioelectron; 2013 Sep; 47():265-70. PubMed ID: 23584389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.