BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 29148722)

  • 21. Impedance matched channel walls in acoustofluidic systems.
    Leibacher I; Schatzer S; Dual J
    Lab Chip; 2014 Feb; 14(3):463-70. PubMed ID: 24310918
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enrichment of cancer cells using aptamers immobilized on a microfluidic channel.
    Phillips JA; Xu Y; Xia Z; Fan ZH; Tan W
    Anal Chem; 2009 Feb; 81(3):1033-9. PubMed ID: 19115856
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An aptamer-functionalized chemomechanically modulated biomolecule catch-and-release system.
    Shastri A; McGregor LM; Liu Y; Harris V; Nan H; Mujica M; Vasquez Y; Bhattacharya A; Ma Y; Aizenberg M; Kuksenok O; Balazs AC; Aizenberg J; He X
    Nat Chem; 2015 May; 7(5):447-54. PubMed ID: 25901824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic acoustic sawtooth metasurfaces for patterning and separation using traveling surface acoustic waves.
    Xu M; Lee PVS; Collins DJ
    Lab Chip; 2021 Dec; 22(1):90-99. PubMed ID: 34860222
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a novel aptamer-based sensing system using atomic force microscopy.
    Miyachi Y; Ogino C; Amino T; Kondo A
    J Biosci Bioeng; 2011 Nov; 112(5):511-4. PubMed ID: 21821470
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid.
    Nam J; Lim H; Kim D; Jung H; Shin S
    Lab Chip; 2012 Apr; 12(7):1347-54. PubMed ID: 22334376
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new lateral flow strip assay (LFSA) using a pair of aptamers for the detection of Vaspin.
    Ahmad Raston NH; Nguyen VT; Gu MB
    Biosens Bioelectron; 2017 Jul; 93():21-25. PubMed ID: 27916536
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aptamer-based thrombin assay on microfluidic platform.
    Chen FY; Wang Z; Li P; Lian HZ; Chen HY
    Electrophoresis; 2013 Dec; 34(24):3260-6. PubMed ID: 24127412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlled Lateral Positioning of Microparticles Inside Droplets Using Acoustophoresis.
    Fornell A; Nilsson J; Jonsson L; Periyannan Rajeswari PK; Joensson HN; Tenje M
    Anal Chem; 2015 Oct; 87(20):10521-6. PubMed ID: 26422760
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High performance isolation of circulating tumor cells by acoustofluidic chip coupled with ultrasonic concentrated energy transducer.
    Qiu H; Wang H; Yang X; Huo F
    Colloids Surf B Biointerfaces; 2023 Feb; 222():113138. PubMed ID: 36638753
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Continuous separation of particles in a PDMS microfluidic channel via travelling surface acoustic waves (TSAW).
    Destgeer G; Lee KH; Jung JH; Alazzam A; Sung HJ
    Lab Chip; 2013 Nov; 13(21):4210-6. PubMed ID: 23982077
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vertical Hydrodynamic Focusing and Continuous Acoustofluidic Separation of Particles via Upward Migration.
    Ahmed H; Destgeer G; Park J; Jung JH; Sung HJ
    Adv Sci (Weinh); 2018 Feb; 5(2):1700285. PubMed ID: 29619294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S; Park JK
    Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.
    Nama N; Barnkob R; Mao Z; Kähler CJ; Costanzo F; Huang TJ
    Lab Chip; 2015 Jun; 15(12):2700-9. PubMed ID: 26001199
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reversible regulation of thrombin adsorption and desorption based on photoresponsive-aptamer modified gold nanoparticles.
    Yu J; Yang L; Liang X; Dong T; Liu H
    Talanta; 2015 Nov; 144():312-7. PubMed ID: 26452827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Particle separation by a moving air-liquid interface in a microchannel.
    Wang F; Chon CH; Li D
    J Colloid Interface Sci; 2010 Dec; 352(2):580-4. PubMed ID: 20851407
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards maintenance-free biosensors for hundreds of bind/release cycles.
    Potyrailo RA; Murray AJ; Nagraj N; Pris AD; Ashe JM; Todorovic M
    Angew Chem Int Ed Engl; 2015 Feb; 54(7):2174-8. PubMed ID: 25476587
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new method for the detection of adenosine based on time-resolved fluorescence sensor.
    Zhang K; Wang K; Xie M; Xu L; Zhu X; Pan S; Zhang Q; Huang B
    Biosens Bioelectron; 2013 Nov; 49():226-30. PubMed ID: 23770393
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrasonic alignment of bio-functionalized magnetic beads and live cells in PDMS micro-fluidic channel.
    Islam AT; Siddique AH; Ramulu TS; Reddy V; Eu YJ; Cho SH; Kim C
    Biomed Microdevices; 2012 Dec; 14(6):1077-84. PubMed ID: 22983792
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro selection of ssDNA aptamers using biotinylated target proteins.
    Mayer G; Höver T
    Methods Mol Biol; 2009; 535():19-32. PubMed ID: 19377986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.