BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

708 related articles for article (PubMed ID: 29148749)

  • 1. Glycosyl Cross-Coupling of Anomeric Nucleophiles: Scope, Mechanism, and Applications in the Synthesis of Aryl C-Glycosides.
    Zhu F; Rodriguez J; Yang T; Kevlishvili I; Miller E; Yi D; O'Neill S; Rourke MJ; Liu P; Walczak MA
    J Am Chem Soc; 2017 Dec; 139(49):17908-17922. PubMed ID: 29148749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rethinking Carbohydrate Synthesis: Stereoretentive Reactions of Anomeric Stannanes.
    Zhu F; O'Neill S; Rodriguez J; Walczak MA
    Chemistry; 2019 Mar; 25(13):3147-3155. PubMed ID: 30051523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycosyl Cross-Coupling with Diaryliodonium Salts: Access to Aryl C-Glycosides of Biomedical Relevance.
    Yi D; Zhu F; Walczak MA
    Org Lett; 2018 Apr; 20(7):1936-1940. PubMed ID: 29528236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Stereospecific Cross-Coupling Reactions of Anomeric Stannanes for the Synthesis of C-Aryl Glycosides.
    Zhu F; Rourke MJ; Yang T; Rodriguez J; Walczak MA
    J Am Chem Soc; 2016 Sep; 138(37):12049-52. PubMed ID: 27612008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereoselective oxidative glycosylation of anomeric nucleophiles with alcohols and carboxylic acids.
    Yang T; Zhu F; Walczak MA
    Nat Commun; 2018 Sep; 9(1):3650. PubMed ID: 30194299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic and Photochemical Strategies to Stabilized Radicals Based on Anomeric Nucleophiles.
    Zhu F; Zhang SQ; Chen Z; Rui J; Hong X; Walczak MA
    J Am Chem Soc; 2020 Jun; 142(25):11102-11113. PubMed ID: 32479072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of Aryl C-Glycosides via Iron-Catalyzed Cross Coupling of Halosugars: Stereoselective Anomeric Arylation of Glycosyl Radicals.
    Adak L; Kawamura S; Toma G; Takenaka T; Isozaki K; Takaya H; Orita A; Li HC; Shing TKM; Nakamura M
    J Am Chem Soc; 2017 Aug; 139(31):10693-10701. PubMed ID: 28762276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereoretentive Reactions at the Anomeric Position: Synthesis of Selenoglycosides.
    Zhu F; O'Neill S; Rodriguez J; Walczak MA
    Angew Chem Int Ed Engl; 2018 Jun; 57(24):7091-7095. PubMed ID: 29671931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper-Catalyzed Stereoselective Borylation and Palladium-Catalyzed Stereospecific Cross-Coupling to Give Aryl C-Glycosides.
    Kurahayashi K; Hanaya K; Sugai T; Hirai G; Higashibayashi S
    Chemistry; 2023 Jan; 29(6):e202203376. PubMed ID: 36344464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2-nitroglycals as powerful glycosyl donors: application in the synthesis of biologically important molecules.
    Schmidt RR; Vankar YD
    Acc Chem Res; 2008 Aug; 41(8):1059-73. PubMed ID: 18598060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acyl Glycosides through Stereospecific Glycosyl Cross-Coupling: Rapid Access to C(sp
    Zhu F; Rodriguez J; O'Neill S; Walczak MA
    ACS Cent Sci; 2018 Dec; 4(12):1652-1662. PubMed ID: 30648149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereoselective palladium-catalyzed O-glycosylation using glycals.
    Kim H; Men H; Lee C
    J Am Chem Soc; 2004 Feb; 126(5):1336-7. PubMed ID: 14759180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereoretentive Intramolecular Glycosyl Cross-Coupling: Development, Scope, and Kinetic Isotope Effect Study.
    Yi D; Zhu F; Walczak MA
    Org Lett; 2018 Aug; 20(15):4627-4631. PubMed ID: 30015497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diastereoselective Synthesis of Aryl C-Glycosides from Glycosyl Esters via C-O Bond Homolysis.
    Wei Y; Ben-Zvi B; Diao T
    Angew Chem Int Ed Engl; 2021 Apr; 60(17):9433-9438. PubMed ID: 33438338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereoselective C-Aryl Glycosylation by Catalytic Cross-Coupling of Heteroaryl Glycosyl Sulfones.
    Wang Q; Lee BC; Song N; Koh MJ
    Angew Chem Int Ed Engl; 2023 Apr; 62(18):e202301081. PubMed ID: 36881462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Palladium(II)-catalyzed rearrangement of glycal trichloroacetimidates: application to the stereoselective synthesis of glycosyl ureas.
    Mercer GJ; Yang J; McKay MJ; Nguyen HM
    J Am Chem Soc; 2008 Aug; 130(33):11210-8. PubMed ID: 18642810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in First-Row Transition Metal-Catalyzed Reductive Coupling Reactions for π-Bond Functionalization and C-Glycosylation.
    Wei Y; Lin LQH; Lee BC; Koh MJ
    Acc Chem Res; 2023 Nov; 56(22):3292-3312. PubMed ID: 37917928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Taming the Reactivity of Glycosyl Iodides To Achieve Stereoselective Glycosidation.
    Gervay-Hague J
    Acc Chem Res; 2016 Jan; 49(1):35-47. PubMed ID: 26524481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remote C-H Glycosylation by Ruthenium(II) Catalysis: Modular Assembly of meta-C-Aryl Glycosides.
    Wu J; Kaplaneris N; Pöhlmann J; Michiyuki T; Yuan B; Ackermann L
    Angew Chem Int Ed Engl; 2022 Oct; 61(42):e202208620. PubMed ID: 35877556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenanthroline Catalysis in Stereoselective 1,2-
    Li J; Nguyen HM
    Acc Chem Res; 2022 Dec; 55(24):3738-3751. PubMed ID: 36448710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.