BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 29148807)

  • 1. Catholyte Formulations for High-Energy Li-S Batteries.
    Phadke S; Coadou E; Anouti M
    J Phys Chem Lett; 2017 Dec; 8(23):5907-5914. PubMed ID: 29148807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Cyclability of Li/Polysulfide Batteries by a Polymer-Modified Carbon Paper Current Collector.
    Cui Y; Fu Y
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20369-76. PubMed ID: 26305234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Lithium/Polysulfide Battery with Dual-Working Mode Enabled by Liquid Fuel and Acrylate-Based Gel Polymer Electrolyte.
    Liu M; Ren Y; Zhou D; Jiang H; Kang F; Zhao T
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2526-2534. PubMed ID: 28026937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Building better lithium-sulfur batteries: from LiNO3 to solid oxide catalyst.
    Ding N; Zhou L; Zhou C; Geng D; Yang J; Chien SW; Liu Z; Ng MF; Yu A; Hor TS; Sullivan MB; Zong Y
    Sci Rep; 2016 Sep; 6():33154. PubMed ID: 27629986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paving the way for using Li₂S batteries.
    Xu R; Zhang X; Yu C; Ren Y; Li JC; Belharouak I
    ChemSusChem; 2014 Sep; 7(9):2457-60. PubMed ID: 25044568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism Investigation of High-Performance Li-Polysulfide Batteries Enabled by Tungsten Disulfide Nanopetals.
    Huang S; Wang Y; Hu J; Lim YV; Kong D; Zheng Y; Ding M; Pam ME; Yang HY
    ACS Nano; 2018 Sep; 12(9):9504-9512. PubMed ID: 30148605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polysulfide Speciation and Migration in Catholyte Lithium-Sulfur Cells.
    Sadd M; Agostini M; Xiong S; Matic A
    Chemphyschem; 2022 Feb; 23(4):e202100853. PubMed ID: 34939728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries.
    Sun Z; Zhang J; Yin L; Hu G; Fang R; Cheng HM; Li F
    Nat Commun; 2017 Mar; 8():14627. PubMed ID: 28256504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment on the Self-Discharge Behavior of Lithium-Sulfur Batteries with LiNO
    Sun M; Wang X; Wang J; Yang H; Wang L; Liu T
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35175-35183. PubMed ID: 30251825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polysulfides Capture-Copper Additive for Long Cycle Life Lithium Sulfur Batteries.
    Jia L; Wu T; Lu J; Ma L; Zhu W; Qiu X
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30248-30255. PubMed ID: 27753479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potassium Hexafluorophosphate Additive Enables Stable Lithium-Sulfur Batteries.
    Li J; Liu S; Cui Y; Zhang S; Wu X; Xiang J; Li M; Wang X; Xia X; Gu C; Tu J
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56017-56026. PubMed ID: 33270437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon Disulfide Cosolvent Electrolytes for High-Performance Lithium Sulfur Batteries.
    Gu S; Wen Z; Qian R; Jin J; Wang Q; Wu M; Zhuo S
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34379-34386. PubMed ID: 27998100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational Integration of Polypropylene/Graphene Oxide/Nafion as Ternary-Layered Separator to Retard the Shuttle of Polysulfides for Lithium-Sulfur Batteries.
    Zhuang TZ; Huang JQ; Peng HJ; He LY; Cheng XB; Chen CM; Zhang Q
    Small; 2016 Jan; 12(3):381-9. PubMed ID: 26641415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrocatalytic Polysulfide Traps for Controlling Redox Shuttle Process of Li-S Batteries.
    Al Salem H; Babu G; Rao CV; Arava LM
    J Am Chem Soc; 2015 Sep; 137(36):11542-5. PubMed ID: 26331670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing a Safe Electrolyte Enabling Long-Life Li/S Batteries.
    Agostini M; Sadd M; Xiong S; Cavallo C; Heo J; Ahn JH; Matic A
    ChemSusChem; 2019 Sep; 12(18):4176-4184. PubMed ID: 31330082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries.
    Chen S; Yu Z; Gordin ML; Yi R; Song J; Wang D
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):6959-6966. PubMed ID: 28157286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ Raman spectroscopy of sulfur speciation in lithium-sulfur batteries.
    Wu HL; Huff LA; Gewirth AA
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1709-19. PubMed ID: 25543831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flame-Retardant and Polysulfide-Suppressed Ether-Based Electrolytes for High-Temperature Li-S Batteries.
    He M; Li X; Holmes NG; Li R; Wang J; Yin G; Zuo P; Sun X
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38296-38304. PubMed ID: 34370436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the effect of a fluorinated ether on the performance of lithium-sulfur batteries.
    Azimi N; Xue Z; Bloom I; Gordin ML; Wang D; Daniel T; Takoudis C; Zhang Z
    ACS Appl Mater Interfaces; 2015 May; 7(17):9169-77. PubMed ID: 25866861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium-sulfur batteries.
    Xu G; Ding B; Nie P; Shen L; Dou H; Zhang X
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):194-9. PubMed ID: 24344876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.