These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 29148807)

  • 21. A Li
    Yen YJ; Chung SH
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58712-58722. PubMed ID: 34846840
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fast, reversible lithium storage with a sulfur/long-chain-polysulfide redox couple.
    Su YS; Fu Y; Guo B; Dai S; Manthiram A
    Chemistry; 2013 Jun; 19(26):8621-6. PubMed ID: 23670897
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Revisiting the positive roles of liquid polysulfides in alkali metal-sulfur electrochemistry: from electrolyte additives to active catholyte.
    Chang C; Pu X
    Nanoscale; 2019 Nov; 11(45):21595-21621. PubMed ID: 31697288
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long Cycle Life Organic Polysulfide Catholyte for Rechargeable Lithium Batteries.
    Wang DY; Si Y; Guo W; Fu Y
    Adv Sci (Weinh); 2020 Feb; 7(4):1902646. PubMed ID: 32076592
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rechargeable Zinc-Aqueous Polysulfide Battery with a Mediator-Ion Solid Electrolyte.
    Gross MM; Manthiram A
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10612-10617. PubMed ID: 29561586
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Boosting High-Performance in Lithium-Sulfur Batteries via Dilute Electrolyte.
    Wu F; Chu F; Ferrero GA; Sevilla M; Fuertes AB; Borodin O; Yu Y; Yushin G
    Nano Lett; 2020 Jul; 20(7):5391-5399. PubMed ID: 32463248
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-Life and High-Areal-Capacity Li-S Batteries Enabled by a Light-Weight Polar Host with Intrinsic Polysulfide Adsorption.
    Pang Q; Nazar LF
    ACS Nano; 2016 Apr; 10(4):4111-8. PubMed ID: 26841116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insight into sulfur reactions in Li-S batteries.
    Xu R; Belharouak I; Zhang X; Chamoun R; Yu C; Ren Y; Nie A; Shahbazian-Yassar R; Lu J; Li JC; Amine K
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21938-45. PubMed ID: 25425055
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High Sulfur Content Material with Stable Cycling in Lithium-Sulfur Batteries.
    Preefer MB; Oschmann B; Hawker CJ; Seshadri R; Wudl F
    Angew Chem Int Ed Engl; 2017 Nov; 56(47):15118-15122. PubMed ID: 28984016
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte.
    Yu X; Bi Z; Zhao F; Manthiram A
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16625-31. PubMed ID: 26161547
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A class of polysulfide catholytes for lithium-sulfur batteries: energy density, cyclability, and voltage enhancement.
    Yu X; Manthiram A
    Phys Chem Chem Phys; 2015 Jan; 17(3):2127-36. PubMed ID: 25484001
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium-Sulfur Batteries.
    Chen S; Dai F; Gordin ML; Yu Z; Gao Y; Song J; Wang D
    Angew Chem Int Ed Engl; 2016 Mar; 55(13):4231-5. PubMed ID: 26918660
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sulfur-functionalized mesoporous carbons as sulfur hosts in Li-S batteries: increasing the affinity of polysulfide intermediates to enhance performance.
    See KA; Jun YS; Gerbec JA; Sprafke JK; Wudl F; Stucky GD; Seshadri R
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):10908-16. PubMed ID: 24524220
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries.
    Yang Y; Zheng G; Misra S; Nelson J; Toney MF; Cui Y
    J Am Chem Soc; 2012 Sep; 134(37):15387-94. PubMed ID: 22909273
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibiting Polysulfide Shuttle in Lithium-Sulfur Batteries through Low-Ion-Pairing Salts and a Triflamide Solvent.
    Shyamsunder A; Beichel W; Klose P; Pang Q; Scherer H; Hoffmann A; Murphy GK; Krossing I; Nazar LF
    Angew Chem Int Ed Engl; 2017 May; 56(22):6192-6197. PubMed ID: 28464473
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Polysulfide Speciation on Mg Anode Passivation in Mg-S Batteries.
    Qian MD; Laskowski FAL; Ware SD; See KA
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36754849
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Greatly Suppressed Shuttle Effect for Improved Lithium Sulfur Battery Performance through Short Chain Intermediates.
    Xu N; Qian T; Liu X; Liu J; Chen Y; Yan C
    Nano Lett; 2017 Jan; 17(1):538-543. PubMed ID: 27977209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards Stable Lithium-Sulfur Batteries with a Low Self-Discharge Rate: Ion Diffusion Modulation and Anode Protection.
    Xu WT; Peng HJ; Huang JQ; Zhao CZ; Cheng XB; Zhang Q
    ChemSusChem; 2015 Sep; 8(17):2892-901. PubMed ID: 26079671
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Encapsulation of S/SWNT with PANI web for enhanced rate and cycle performance in lithium sulfur batteries.
    Kim JH; Fu K; Choi J; Kil K; Kim J; Han X; Hu L; Paik U
    Sci Rep; 2015 Mar; 5():8946. PubMed ID: 25752298
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Suppressing the dissolution of polysulfides with cosolvent fluorinated diether towards high-performance lithium sulfur batteries.
    Gu S; Qian R; Jin J; Wang Q; Guo J; Zhang S; Zhuo S; Wen Z
    Phys Chem Chem Phys; 2016 Oct; 18(42):29293-29299. PubMed ID: 27731873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.