These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 2914890)
1. Oxidation of cycloalkylamines by cytochrome P-450. Mechanism-based inactivation, adduct formation, ring expansion, and nitrone formation. Bondon A; Macdonald TL; Harris TM; Guengerich FP J Biol Chem; 1989 Feb; 264(4):1988-97. PubMed ID: 2914890 [TBL] [Abstract][Full Text] [Related]
2. Cytochrome P450-catalyzed oxidation of N-benzyl-N-cyclopropylamine generates both cyclopropanone hydrate and 3-hydroxypropionaldehyde via hydrogen abstraction, not single electron transfer. Cerny MA; Hanzlik RP J Am Chem Soc; 2006 Mar; 128(10):3346-54. PubMed ID: 16522116 [TBL] [Abstract][Full Text] [Related]
3. Metabolic oxidation of carcinogenic arylamines by rat, dog, and human hepatic microsomes and by purified flavin-containing and cytochrome P-450 monooxygenases. Hammons GJ; Guengerich FP; Weis CC; Beland FA; Kadlubar FF Cancer Res; 1985 Aug; 45(8):3578-85. PubMed ID: 4016738 [TBL] [Abstract][Full Text] [Related]
5. Bioactivation of benzylamine to reactive intermediates in rodents: formation of glutathione, glutamate, and peptide conjugates. Mutlib AE; Dickenson P; Chen SY; Espina RJ; Daniels JS; Gan LS Chem Res Toxicol; 2002 Sep; 15(9):1190-207. PubMed ID: 12230413 [TBL] [Abstract][Full Text] [Related]
6. Evidence for specific base catalysis in N-dealkylation reactions catalyzed by cytochrome P450 and chloroperoxidase. Differences in rates of deprotonation of aminium radicals as an explanation for high kinetic hydrogen isotope effects observed with peroxidases. Okazaki O; Guengerich FP J Biol Chem; 1993 Jan; 268(3):1546-52. PubMed ID: 8380572 [TBL] [Abstract][Full Text] [Related]
7. Effect of alpha-methylation on inactivation of monoamine oxidase by N-cyclopropylbenzylamine. Silverman RB Biochemistry; 1984 Oct; 23(22):5206-13. PubMed ID: 6509020 [TBL] [Abstract][Full Text] [Related]
8. Formation of cyclopropanone during cytochrome P450-catalyzed N-dealkylation of a cyclopropylamine. Shaffer CL; Harriman S; Koen YM; Hanzlik RP J Am Chem Soc; 2002 Jul; 124(28):8268-74. PubMed ID: 12105905 [TBL] [Abstract][Full Text] [Related]
9. Cytochrome P-450 inactivation by 3-alkylsydnones. Mechanistic implications of N-alkyl and N-alkenyl heme adduct formation. Grab LA; Swanson BA; Ortiz de Montellano PR Biochemistry; 1988 Jun; 27(13):4805-14. PubMed ID: 2844240 [TBL] [Abstract][Full Text] [Related]
10. Studies on the cytochrome P450 catalyzed oxidation of 13C labeled 1-cyclopropyl-4-phenyl-1,2,3,6-tetrahydropyridine by 13C NMR. Bissel P; Castagnoli N; Penich S Bioorg Med Chem; 2005 Apr; 13(8):2975-80. PubMed ID: 15781407 [TBL] [Abstract][Full Text] [Related]
11. The catalytic mechanism of cytochrome P-450. Spin-trapping evidence for one-electron substrate oxidation. Augusto O; Beilan HS; Ortiz de Montellano PR J Biol Chem; 1982 Oct; 257(19):11288-95. PubMed ID: 6288676 [TBL] [Abstract][Full Text] [Related]
12. Cyclopropylamine inactivation of cytochromes P450: role of metabolic intermediate complexes. Cerny MA; Hanzlik RP Arch Biochem Biophys; 2005 Apr; 436(2):265-75. PubMed ID: 15797239 [TBL] [Abstract][Full Text] [Related]
13. Kinetic isotope effects on cytochrome P-450-catalyzed oxidation reactions. Evidence for the irreversible formation of an activated oxygen intermediate of cytochrome P-448. Harada N; Miwa GT; Walsh JS; Lu AY J Biol Chem; 1984 Mar; 259(5):3005-10. PubMed ID: 6699004 [TBL] [Abstract][Full Text] [Related]
14. N-dealkylation of an N-cyclopropylamine by horseradish peroxidase. Fate of the cyclopropyl group. Shaffer CL; Morton MD; Hanzlik RP J Am Chem Soc; 2001 Sep; 123(35):8502-8. PubMed ID: 11525657 [TBL] [Abstract][Full Text] [Related]
15. Disposition of 1-[3-(aminomethyl)phenyl]-N-[3-fluoro-2'- (methylsulfonyl)-[1,1'-biphenyl]-4-yl]-3-(trifluoromethyl)- 1H-pyrazole-5-carboxamide (DPC 423) by novel metabolic pathways. Characterization of unusual metabolites by liquid chromatography/mass spectrometry and NMR. Mutlib AE; Shockcor J; Chen SY; Espina RJ; Pinto DJ; Orwat MJ; Prakash SR; Gan LS Chem Res Toxicol; 2002 Jan; 15(1):48-62. PubMed ID: 11800597 [TBL] [Abstract][Full Text] [Related]
16. Metabolism-dependent inhibition of CYP3A4 by lapatinib: evidence for formation of a metabolic intermediate complex with a nitroso/oxime metabolite formed via a nitrone intermediate. Barbara JE; Kazmi F; Parkinson A; Buckley DB Drug Metab Dispos; 2013 May; 41(5):1012-22. PubMed ID: 23404373 [TBL] [Abstract][Full Text] [Related]
17. Activation of alkylhydrazines to free radical intermediates by ethanol-inducible cytochrome P-4502E1 (CYP2E1). Albano E; Comoglio A; Clot P; Iannone A; Tomasi A; Ingelman-Sundberg M Biochim Biophys Acta; 1995 Apr; 1243(3):414-20. PubMed ID: 7727516 [TBL] [Abstract][Full Text] [Related]
18. Partitioning between N-dealkylation and N-oxygenation in the oxidation of N,N-dialkylarylamines catalyzed by cytochrome P450 2B1. Seto Y; Guengerich FP J Biol Chem; 1993 May; 268(14):9986-97. PubMed ID: 8486725 [TBL] [Abstract][Full Text] [Related]
19. Cytochrome P-450 inactivation: structure of the prosthetic heme adduct with propyne. Ortiz de Montellano PR; Kunze KL Biochemistry; 1981 Dec; 20(25):7266-71. PubMed ID: 7317380 [TBL] [Abstract][Full Text] [Related]
20. Determinants of protein modification versus heme alkylation: inactivation of cytochrome P450 1A1 by 1-ethynylpyrene and phenylacetylene. Chan WK; Sui Z; Ortiz de Montellano PR Chem Res Toxicol; 1993; 6(1):38-45. PubMed ID: 8448348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]