These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Correlation between corneal and retinal neurodegenerative changes and their association with microvascular perfusion in type II diabetes. Hafner J; Karst S; Sacu S; Scholda C; Pablik E; Schmidt-Erfurth U Acta Ophthalmol; 2019 Jun; 97(4):e545-e550. PubMed ID: 30311432 [TBL] [Abstract][Full Text] [Related]
9. Association Between Retinal Layer Thickness and Perfusion Status in Extramacular Areas in Diabetic Retinopathy. Ito H; Ito Y; Kataoka K; Ueno S; Takeuchi J; Nakano Y; Fujita A; Horiguchi E; Kaneko H; Iwase T; Terasaki H Am J Ophthalmol; 2020 Jul; 215():25-36. PubMed ID: 32224103 [TBL] [Abstract][Full Text] [Related]
10. Alterations in Retinal Layer Thickness and Reflectance at Different Stages of Diabetic Retinopathy by En Face Optical Coherence Tomography. Wanek J; Blair NP; Chau FY; Lim JI; Leiderman YI; Shahidi M Invest Ophthalmol Vis Sci; 2016 Jul; 57(9):OCT341-7. PubMed ID: 27409491 [TBL] [Abstract][Full Text] [Related]
11. Relationship between Functional and Structural Changes in Diabetic Vessels in Optical Coherence Tomography Angiography. Miwa Y; Murakami T; Suzuma K; Uji A; Yoshitake S; Fujimoto M; Yoshitake T; Tamura Y; Yoshimura N Sci Rep; 2016 Jun; 6():29064. PubMed ID: 27350562 [TBL] [Abstract][Full Text] [Related]
13. Repeatability of peripapillary retinal nerve fiber layer and inner retinal thickness among two spectral domain optical coherence tomography devices. Matlach J; Wagner M; Malzahn U; Göbel W Invest Ophthalmol Vis Sci; 2014 Sep; 55(10):6536-46. PubMed ID: 25228545 [TBL] [Abstract][Full Text] [Related]
14. Retinal flow density by optical coherence tomography angiography is useful for detection of nonperfused areas in diabetic retinopathy. Kaizu Y; Nakao S; Sekiryu H; Wada I; Yamaguchi M; Hisatomi T; Ikeda Y; Kishimoto J; Sonoda KH Graefes Arch Clin Exp Ophthalmol; 2018 Dec; 256(12):2275-2282. PubMed ID: 30191299 [TBL] [Abstract][Full Text] [Related]
15. The association between photoreceptor layer thickness measured by optical coherence tomography and visual sensitivity in glaucomatous eyes. Asaoka R; Murata H; Yanagisawa M; Fujino Y; Matsuura M; Inoue T; Inoue K; Yamagami J PLoS One; 2017; 12(10):e0184064. PubMed ID: 29023460 [TBL] [Abstract][Full Text] [Related]
16. Foveal ganglion cell layer damage in ischemic diabetic maculopathy: correlation of optical coherence tomographic and anatomic changes. Byeon SH; Chu YK; Lee H; Lee SY; Kwon OW Ophthalmology; 2009 Oct; 116(10):1949-59.e8. PubMed ID: 19699533 [TBL] [Abstract][Full Text] [Related]
17. Diabetic Nonperfused Areas in Macular and Extramacular Regions on Wide-Field Optical Coherence Tomography Angiography. Yasukura S; Murakami T; Suzuma K; Yoshitake T; Nakanishi H; Fujimoto M; Oishi M; Tsujikawa A Invest Ophthalmol Vis Sci; 2018 Dec; 59(15):5893-5903. PubMed ID: 30550612 [TBL] [Abstract][Full Text] [Related]
18. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Freiberg FJ; Pfau M; Wons J; Wirth MA; Becker MD; Michels S Graefes Arch Clin Exp Ophthalmol; 2016 Jun; 254(6):1051-8. PubMed ID: 26338819 [TBL] [Abstract][Full Text] [Related]
19. Retinal sensitivity loss and structural disturbance in areas of capillary nonperfusion of eyes with diabetic retinopathy. Unoki N; Nishijima K; Sakamoto A; Kita M; Watanabe D; Hangai M; Kimura T; Kawagoe N; Ohta M; Yoshimura N Am J Ophthalmol; 2007 Nov; 144(5):755-760. PubMed ID: 17868632 [TBL] [Abstract][Full Text] [Related]
20. Distinguishing Diabetic Macular Edema From Capillary Nonperfusion Using Optical Coherence Tomography Angiography. de Carlo TE; Chin AT; Joseph T; Baumal CR; Witkin AJ; Duker JS; Waheed NK Ophthalmic Surg Lasers Imaging Retina; 2016 Feb; 47(2):108-14. PubMed ID: 26878442 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]