BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

459 related articles for article (PubMed ID: 29149445)

  • 1. The influences of separators on capacitive deionization systems in the cycle of adsorption and desorption.
    Yao Q; Shi Z; Liu Q; Gu Z; Ning R
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3313-3319. PubMed ID: 29149445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self similarities in desalination dynamics and performance using capacitive deionization.
    Ramachandran A; Hemmatifar A; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2018 Sep; 140():323-334. PubMed ID: 29734040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.
    Wu T; Wang G; Zhan F; Dong Q; Ren Q; Wang J; Qiu J
    Water Res; 2016 Apr; 93():30-37. PubMed ID: 26878480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination.
    Liang P; Yuan L; Yang X; Zhou S; Huang X
    Water Res; 2013 May; 47(7):2523-30. PubMed ID: 23497976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of salt adsorption rate in membrane capacitive deionization.
    Zhao R; Satpradit O; Rijnaarts HH; Biesheuvel PM; van der Wal A
    Water Res; 2013 Apr; 47(5):1941-52. PubMed ID: 23395310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer.
    Kim YJ; Choi JH
    Water Res; 2010 Feb; 44(3):990-6. PubMed ID: 19896691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water desalination using capacitive deionization with microporous carbon electrodes.
    Porada S; Weinstein L; Dash R; van der Wal A; Bryjak M; Gogotsi Y; Biesheuvel PM
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1194-9. PubMed ID: 22329838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing capacitive deionization performance of electrospun activated carbon nanofibers by coupling with carbon nanotubes.
    Dong Q; Wang G; Wu T; Peng S; Qiu J
    J Colloid Interface Sci; 2015 May; 446():373-8. PubMed ID: 25595622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization.
    Hassanvand A; Chen GQ; Webley PA; Kentish SE
    Water Res; 2018 Mar; 131():100-109. PubMed ID: 29277078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ spatially and temporally resolved measurements of salt concentration between charging porous electrodes for desalination by capacitive deionization.
    Suss ME; Biesheuvel PM; Baumann TF; Stadermann M; Santiago JG
    Environ Sci Technol; 2014; 48(3):2008-15. PubMed ID: 24433022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulose Derived Graphenic Fibers for Capacitive Desalination of Brackish Water.
    Pugazhenthiran N; Sen Gupta S; Prabhath A; Manikandan M; Swathy JR; Raman VK; Pradeep T
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20156-63. PubMed ID: 26305260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel graphene-like electrodes for capacitive deionization.
    Li H; Zou L; Pan L; Sun Z
    Environ Sci Technol; 2010 Nov; 44(22):8692-7. PubMed ID: 20964326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI.
    Ma J; He C; He D; Zhang C; Waite TD
    Water Res; 2018 Nov; 144():296-303. PubMed ID: 30053621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrosorptive removal of salt ions from water by membrane capacitive deionization (MCDI): characterization, adsorption equilibrium, and kinetics.
    Li G; Cai W; Zhao R; Hao L
    Environ Sci Pollut Res Int; 2019 Jun; 26(17):17787-17796. PubMed ID: 31030403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theory of water treatment by capacitive deionization with redox active porous electrodes.
    He F; Biesheuvel PM; Bazant MZ; Hatton TA
    Water Res; 2018 Apr; 132():282-291. PubMed ID: 29331915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Salt Removal in an Inverted Capacitive Deionization Cell Using Amine Modified Microporous Carbon Cathodes.
    Gao X; Omosebi A; Landon J; Liu K
    Environ Sci Technol; 2015 Sep; 49(18):10920-6. PubMed ID: 26302134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing capacitive deionization technology as an effective method for water treatment using commercially available graphene.
    Dursun D; Ozkul S; Yuksel R; Unalan HE
    Water Sci Technol; 2017 Feb; 75(3-4):643-649. PubMed ID: 28192358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the Ion-Size-Based Selectivity of Capacitive Deionization Electrodes.
    Guyes EN; Malka T; Suss ME
    Environ Sci Technol; 2019 Jul; 53(14):8447-8454. PubMed ID: 31187620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing the energy efficiency of capacitive deionization reactors working under real-world conditions.
    García-Quismondo E; Santos C; Lado J; Palma J; Anderson MA
    Environ Sci Technol; 2013 Oct; 47(20):11866-72. PubMed ID: 24015835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced desalination performance of membrane capacitive deionization cells by packing the flow chamber with granular activated carbon.
    Bian Y; Yang X; Liang P; Jiang Y; Zhang C; Huang X
    Water Res; 2015 Nov; 85():371-6. PubMed ID: 26360230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.