These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

459 related articles for article (PubMed ID: 29149445)

  • 41. Frequency analysis and resonant operation for efficient capacitive deionization.
    Ramachandran A; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2018 Nov; 144():581-591. PubMed ID: 30092504
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhancing Brackish Water Desalination using Magnetic Flow-electrode Capacitive Deionization.
    Xu L; Peng S; Mao Y; Zong Y; Zhang X; Wu D
    Water Res; 2022 Jun; 216():118290. PubMed ID: 35306460
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Temperature and desorption mode matter in capacitive deionization process for water desalination.
    Huang KZ; Tang HL
    Environ Technol; 2020 Nov; 41(26):3456-3463. PubMed ID: 31018768
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of Resistances of a Capacitive Deionization System.
    Qu Y; Baumann TF; Santiago JG; Stadermann M
    Environ Sci Technol; 2015 Aug; 49(16):9699-706. PubMed ID: 26214554
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Insufficient desorption of ions in constant-current membrane capacitive deionization (MCDI): Problems and solutions.
    He Z; Li Y; Wang Y; Miller CJ; Fletcher J; Lian B; Waite TD
    Water Res; 2023 Aug; 242():120273. PubMed ID: 37393810
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications.
    Seo SJ; Jeon H; Lee JK; Kim GY; Park D; Nojima H; Lee J; Moon SH
    Water Res; 2010 Apr; 44(7):2267-75. PubMed ID: 19897222
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selectivity adsorption of sulfate by amino-modified activated carbon during capacitive deionization.
    Chen X; Deng W; Miao L; Gao M; Ao T; Chen W; Ueyama T; Dai Q
    Environ Technol; 2023 Apr; 44(10):1505-1517. PubMed ID: 34762018
    [No Abstract]   [Full Text] [Related]  

  • 48. Hybrid capacitive deionization of NaCl and toxic heavy metal ions using faradic electrodes of silver nanospheres decorated pomegranate peel-derived activated carbon.
    Bharath G; Hai A; Rambabu K; Ahmed F; Haidyrah AS; Ahmad N; Hasan SW; Banat F
    Environ Res; 2021 Jun; 197():111110. PubMed ID: 33864793
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of pore structure on the high-performance capacitive deionization using chemically activated carbon nanofibers.
    Im JS; Kim JG; Lee YS
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2268-73. PubMed ID: 24745222
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review.
    Zhang C; He D; Ma J; Tang W; Waite TD
    Water Res; 2018 Jan; 128():314-330. PubMed ID: 29107916
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Arsenic removal from groundwater using low-cost carbon composite electrodes for capacitive deionization.
    Lee JY; Chaimongkalayon N; Lim J; Ha HY; Moon SH
    Water Sci Technol; 2016; 73(12):3064-71. PubMed ID: 27332854
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Towards Electrochemical Water Desalination Techniques: A Review on Capacitive Deionization, Membrane Capacitive Deionization and Flow Capacitive Deionization.
    Folaranmi G; Bechelany M; Sistat P; Cretin M; Zaviska F
    Membranes (Basel); 2020 May; 10(5):. PubMed ID: 32408502
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pseudocapacitive Desalination of Brackish Water and Seawater with Vanadium-Pentoxide-Decorated Multiwalled Carbon Nanotubes.
    Lee J; Srimuk P; Aristizabal K; Kim C; Choudhury S; Nah YC; Mücklich F; Presser V
    ChemSusChem; 2017 Sep; 10(18):3611-3623. PubMed ID: 28741864
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reducing impedance to ionic flux in capacitive deionization with Bi-tortuous activated carbon electrodes coated with asymmetrically charged polyelectrolytes.
    Bhat AP; Reale ER; Del Cerro M; Smith KC; Cusick RD
    Water Res X; 2019 Apr; 3():100027. PubMed ID: 31193985
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Intrinsic tradeoff between kinetic and energetic efficiencies in membrane capacitive deionization.
    Wang L; Lin S
    Water Res; 2018 Feb; 129():394-401. PubMed ID: 29174829
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Use of Soft Electrodes in Capacitive Deionization of Solutions.
    Ahualli S; Iglesias GR; Fernández MM; Jiménez ML; Delgado ÁV
    Environ Sci Technol; 2017 May; 51(9):5326-5333. PubMed ID: 28368580
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High performance of membrane capacitive deionization with ZnS/g-C
    Wei S; Feng L; Zhang X; Sun Z; Bai H; Liu P
    Water Sci Technol; 2023 Dec; 88(11):2849-2861. PubMed ID: 38096073
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fabrication of Activated Carbon Decorated with ZnO Nanorod-Based Electrodes for Desalination of Brackish Water Using Capacitive Deionization Technology.
    Martinez J; Colán M; Castillón R; Ramos PG; Paria R; Sánchez L; Rodríguez JM
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674925
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Treatment of low-level Cu(II) wastewater and regeneration through a novel capacitive deionization-electrodeionization (CDI-EDI) technology.
    Zhao C; Zhang L; Ge R; Zhang A; Zhang C; Chen X
    Chemosphere; 2019 Feb; 217():763-772. PubMed ID: 30448756
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Theory of membrane capacitive deionization including the effect of the electrode pore space.
    Biesheuvel PM; Zhao R; Porada S; van der Wal A
    J Colloid Interface Sci; 2011 Aug; 360(1):239-48. PubMed ID: 21592485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.