These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 29149445)

  • 61. Exploring the impact of pore size distribution on the performance of carbon electrodes for capacitive deionization.
    Han L; Karthikeyan KG; Anderson MA; Gregory KB
    J Colloid Interface Sci; 2014 Sep; 430():93-9. PubMed ID: 24998059
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Asymmetrical removal of sodium and chloride in flow-through capacitive deionization.
    Algurainy Y; Call DF
    Water Res; 2020 Sep; 183():116044. PubMed ID: 32721704
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes.
    Tang W; He D; Zhang C; Kovalsky P; Waite TD
    Water Res; 2017 Sep; 120():229-237. PubMed ID: 28500988
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Energy breakdown in capacitive deionization.
    Hemmatifar A; Palko JW; Stadermann M; Santiago JG
    Water Res; 2016 Nov; 104():303-311. PubMed ID: 27565115
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Enhanced capacitive deionization of a low-concentration brackish water with protonated carbon nitride-decorated graphene oxide electrode.
    Yu J; Liu Y; Zhang X; Liu R; Yang Q; Hu S; Song H; Li P; Li A; Zhang S
    Chemosphere; 2022 Apr; 293():133580. PubMed ID: 35026198
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Spinel LiMn
    Jiang Y; Li K; Alhassan SI; Cao Y; Deng H; Tan S; Wang H; Tang C; Chai L
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612838
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration.
    Ma J; Ma J; Zhang C; Song J; Dong W; Waite TD
    Water Res; 2020 Jan; 168():115186. PubMed ID: 31655437
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Recent Advances in Faradic Electrochemical Deionization: System Architectures
    Liu Y; Wang K; Xu X; Eid K; Abdullah AM; Pan L; Yamauchi Y
    ACS Nano; 2021 Sep; 15(9):13924-13942. PubMed ID: 34498859
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Recent progress in materials and architectures for capacitive deionization: A comprehensive review.
    Datar SD; Mane R; Jha N
    Water Environ Res; 2022 Mar; 94(3):e10696. PubMed ID: 35289462
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Enhanced Desalination Performance of Capacitive Deionization Using Nanoporous Carbon Derived from ZIF-67 Metal Organic Frameworks and CNTs.
    Phuoc NM; Jung E; Tran NAT; Lee YW; Yoo CY; Kang BG; Cho Y
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33105663
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Dual-Ion Electrochemical Deionization System with Binder-Free Aerogel Electrodes.
    Zhao W; Ding M; Guo L; Yang HY
    Small; 2019 Mar; 15(9):e1805505. PubMed ID: 30714314
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Single-Walled Carbon Nanotube (SWCNT) Loaded Porous Reticulated Vitreous Carbon (RVC) Electrodes Used in a Capacitive Deionization (CDI) Cell for Effective Desalination.
    Aldalbahi A; Rahaman M; Almoiqli M; Hamedelniel A; Alrehaili A
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 30011849
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Capacitive deionization of a RO brackish water by AC/graphene composite electrodes.
    Chong LG; Chen PA; Huang JY; Huang HL; Wang HP
    Chemosphere; 2018 Jan; 191():296-301. PubMed ID: 29045931
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Enhancing capacitive deionization performance with charged structural polysaccharide electrode binders.
    Kim M; Cerro MD; Hand S; Cusick RD
    Water Res; 2019 Jan; 148():388-397. PubMed ID: 30399553
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Optimization of constant-current operation in membrane capacitive deionization (MCDI) using variable discharging operations.
    He Z; Liu S; Lian B; Fletcher J; Bales C; Wang Y; Waite TD
    Water Res; 2021 Oct; 204():117646. PubMed ID: 34543974
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes.
    Cho Y; Yoo CY; Lee SW; Yoon H; Lee KS; Yang S; Kim DK
    Water Res; 2019 Mar; 151():252-259. PubMed ID: 30605773
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Ion Removal Performance, Structural/Compositional Dynamics, and Electrochemical Stability of Layered Manganese Oxide Electrodes in Hybrid Capacitive Deionization.
    Byles BW; Hayes-Oberst B; Pomerantseva E
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32313-32322. PubMed ID: 30182718
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Selective removal of Cl
    Min X; Zhu M; He Y; Wang Y; Deng H; Wang S; Jin L; Wang H; Zhang L; Chai L
    Chemosphere; 2020 Jul; 251():126319. PubMed ID: 32169717
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Capacitive deionization on-chip as a method for microfluidic sample preparation.
    Roelofs SH; Kim B; Eijkel JC; Han J; van den Berg A; Odijk M
    Lab Chip; 2015 Mar; 15(6):1458-64. PubMed ID: 25607349
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Using mesoporous carbon electrodes for brackish water desalination.
    Zou L; Li L; Song H; Morris G
    Water Res; 2008 Apr; 42(8-9):2340-8. PubMed ID: 18222527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.