BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 2914949)

  • 1. Isolation, characterization, and synthesis of chrysobactin, a compound with siderophore activity from Erwinia chrysanthemi.
    Persmark M; Expert D; Neilands JB
    J Biol Chem; 1989 Feb; 264(6):3187-93. PubMed ID: 2914949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferric iron uptake in Erwinia chrysanthemi mediated by chrysobactin and related catechol-type compounds.
    Persmark M; Expert D; Neilands JB
    J Bacteriol; 1992 Jul; 174(14):4783-9. PubMed ID: 1624465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron(III) uptake and release by chrysobactin, a siderophore of the phytophatogenic bacterium Erwinia chrysanthemi.
    Tomisić V; Blanc S; Elhabiri M; Expert D; Albrecht-Gary AM
    Inorg Chem; 2008 Oct; 47(20):9419-30. PubMed ID: 18803373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron(III) complexes of chrysobactin, the siderophore of Erwinia chrysanthemi.
    Persmark M; Neilands JB
    Biometals; 1992; 5(1):29-36. PubMed ID: 1392469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chrysobactin-dependent iron acquisition in Erwinia chrysanthemi. Functional study of a homolog of the Escherichia coli ferric enterobactin esterase.
    Rauscher L; Expert D; Matzanke BF; Trautwein AX
    J Biol Chem; 2002 Jan; 277(4):2385-95. PubMed ID: 11694506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection.
    Franza T; Mahé B; Expert D
    Mol Microbiol; 2005 Jan; 55(1):261-75. PubMed ID: 15612933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of optically pure chrysobactin and immunoassay development.
    Lu C; Buyer JS; Okonya JF; Miller MJ
    Biometals; 1996 Oct; 9(4):377-83. PubMed ID: 8837459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a tonB mutation in Erwinia chrysanthemi 3937: TonB(Ech) is a member of the enterobacterial TonB family.
    Enard C; Expert D
    Microbiology (Reading); 2000 Aug; 146 ( Pt 8)():2051-2058. PubMed ID: 10931909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Siderophore-controlled iron assimilation in the enterobacterium Erwinia chrysanthemi: evidence for the involvement of bacterioferritin and the Suf iron-sulfur cluster assembly machinery.
    Expert D; Boughammoura A; Franza T
    J Biol Chem; 2008 Dec; 283(52):36564-72. PubMed ID: 18990691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential expression of two siderophore-dependent iron-acquisition pathways in Erwinia chrysanthemi 3937: characterization of a novel ferrisiderophore permease of the ABC transporter family.
    Mahé B; Masclaux C; Rauscher L; Enard C; Expert D
    Mol Microbiol; 1995 Oct; 18(1):33-43. PubMed ID: 8596459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron Deficiency Induced by Chrysobactin in Saintpaulia Leaves Inoculated with Erwinia chrysanthemi.
    Neema C; Laulhere JP; Expert D
    Plant Physiol; 1993 Jul; 102(3):967-973. PubMed ID: 12231882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic analysis of the Erwinia chrysanthemi 3937 chrysobactin iron-transport system: characterization of a gene cluster involved in uptake and biosynthetic pathways.
    Franza T; Enard C; van Gijsegem F; Expert D
    Mol Microbiol; 1991 Jun; 5(6):1319-29. PubMed ID: 1787788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chrysobactin siderophores produced by Dickeya chrysanthemi EC16.
    Sandy M; Butler A
    J Nat Prod; 2011 May; 74(5):1207-12. PubMed ID: 21545171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negative transcriptional control of iron transport in Erwinia chrysanthemi involves an iron-responsive two-factor system.
    Expert D; Sauvage C; Neilands JB
    Mol Microbiol; 1992 Jul; 6(14):2009-17. PubMed ID: 1508046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systemic virulence of Erwinia chrysanthemi 3937 requires a functional iron assimilation system.
    Enard C; Diolez A; Expert D
    J Bacteriol; 1988 Jun; 170(6):2419-26. PubMed ID: 3372473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification of catechol siderophores by boronate affinity chromatography: identification of chrysobactin from Erwinia carotovora subsp. carotovora.
    Barnes HH; Ishimaru CA
    Biometals; 1999 Mar; 12(1):83-7. PubMed ID: 10420578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The virulence-associated chrysobactin iron uptake system of Erwinia chrysanthemi 3937 involves an operon encoding transport and biosynthetic functions.
    Franza T; Expert D
    J Bacteriol; 1991 Nov; 173(21):6874-81. PubMed ID: 1657869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of Erwinia chrysanthemi mutants defective in degradation of hexuronates.
    van Gijsegem F; Hugouvieux-Cotte-Pattat N; Robert-Baudouy J
    J Bacteriol; 1985 Feb; 161(2):702-8. PubMed ID: 3968035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erwinia chrysanthemi iron metabolism: the unexpected implication of the inner membrane platform within the type II secretion system.
    Douet V; Expert D; Barras F; Py B
    J Bacteriol; 2009 Feb; 191(3):795-804. PubMed ID: 18978048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Siderophore-mediated upregulation of Arabidopsis ferritin expression in response to Erwinia chrysanthemi infection.
    Dellagi A; Rigault M; Segond D; Roux C; Kraepiel Y; Cellier F; Briat JF; Gaymard F; Expert D
    Plant J; 2005 Jul; 43(2):262-72. PubMed ID: 15998312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.