These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 2914949)
1. Isolation, characterization, and synthesis of chrysobactin, a compound with siderophore activity from Erwinia chrysanthemi. Persmark M; Expert D; Neilands JB J Biol Chem; 1989 Feb; 264(6):3187-93. PubMed ID: 2914949 [TBL] [Abstract][Full Text] [Related]
2. Ferric iron uptake in Erwinia chrysanthemi mediated by chrysobactin and related catechol-type compounds. Persmark M; Expert D; Neilands JB J Bacteriol; 1992 Jul; 174(14):4783-9. PubMed ID: 1624465 [TBL] [Abstract][Full Text] [Related]
3. Iron(III) uptake and release by chrysobactin, a siderophore of the phytophatogenic bacterium Erwinia chrysanthemi. Tomisić V; Blanc S; Elhabiri M; Expert D; Albrecht-Gary AM Inorg Chem; 2008 Oct; 47(20):9419-30. PubMed ID: 18803373 [TBL] [Abstract][Full Text] [Related]
4. Iron(III) complexes of chrysobactin, the siderophore of Erwinia chrysanthemi. Persmark M; Neilands JB Biometals; 1992; 5(1):29-36. PubMed ID: 1392469 [TBL] [Abstract][Full Text] [Related]
5. Chrysobactin-dependent iron acquisition in Erwinia chrysanthemi. Functional study of a homolog of the Escherichia coli ferric enterobactin esterase. Rauscher L; Expert D; Matzanke BF; Trautwein AX J Biol Chem; 2002 Jan; 277(4):2385-95. PubMed ID: 11694506 [TBL] [Abstract][Full Text] [Related]
6. Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection. Franza T; Mahé B; Expert D Mol Microbiol; 2005 Jan; 55(1):261-75. PubMed ID: 15612933 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of optically pure chrysobactin and immunoassay development. Lu C; Buyer JS; Okonya JF; Miller MJ Biometals; 1996 Oct; 9(4):377-83. PubMed ID: 8837459 [TBL] [Abstract][Full Text] [Related]
8. Characterization of a tonB mutation in Erwinia chrysanthemi 3937: TonB(Ech) is a member of the enterobacterial TonB family. Enard C; Expert D Microbiology (Reading); 2000 Aug; 146 ( Pt 8)():2051-2058. PubMed ID: 10931909 [TBL] [Abstract][Full Text] [Related]
9. Siderophore-controlled iron assimilation in the enterobacterium Erwinia chrysanthemi: evidence for the involvement of bacterioferritin and the Suf iron-sulfur cluster assembly machinery. Expert D; Boughammoura A; Franza T J Biol Chem; 2008 Dec; 283(52):36564-72. PubMed ID: 18990691 [TBL] [Abstract][Full Text] [Related]
10. Differential expression of two siderophore-dependent iron-acquisition pathways in Erwinia chrysanthemi 3937: characterization of a novel ferrisiderophore permease of the ABC transporter family. Mahé B; Masclaux C; Rauscher L; Enard C; Expert D Mol Microbiol; 1995 Oct; 18(1):33-43. PubMed ID: 8596459 [TBL] [Abstract][Full Text] [Related]
11. Iron Deficiency Induced by Chrysobactin in Saintpaulia Leaves Inoculated with Erwinia chrysanthemi. Neema C; Laulhere JP; Expert D Plant Physiol; 1993 Jul; 102(3):967-973. PubMed ID: 12231882 [TBL] [Abstract][Full Text] [Related]
12. Genetic analysis of the Erwinia chrysanthemi 3937 chrysobactin iron-transport system: characterization of a gene cluster involved in uptake and biosynthetic pathways. Franza T; Enard C; van Gijsegem F; Expert D Mol Microbiol; 1991 Jun; 5(6):1319-29. PubMed ID: 1787788 [TBL] [Abstract][Full Text] [Related]
13. Chrysobactin siderophores produced by Dickeya chrysanthemi EC16. Sandy M; Butler A J Nat Prod; 2011 May; 74(5):1207-12. PubMed ID: 21545171 [TBL] [Abstract][Full Text] [Related]
14. Negative transcriptional control of iron transport in Erwinia chrysanthemi involves an iron-responsive two-factor system. Expert D; Sauvage C; Neilands JB Mol Microbiol; 1992 Jul; 6(14):2009-17. PubMed ID: 1508046 [TBL] [Abstract][Full Text] [Related]
15. Systemic virulence of Erwinia chrysanthemi 3937 requires a functional iron assimilation system. Enard C; Diolez A; Expert D J Bacteriol; 1988 Jun; 170(6):2419-26. PubMed ID: 3372473 [TBL] [Abstract][Full Text] [Related]
16. Purification of catechol siderophores by boronate affinity chromatography: identification of chrysobactin from Erwinia carotovora subsp. carotovora. Barnes HH; Ishimaru CA Biometals; 1999 Mar; 12(1):83-7. PubMed ID: 10420578 [TBL] [Abstract][Full Text] [Related]
17. The virulence-associated chrysobactin iron uptake system of Erwinia chrysanthemi 3937 involves an operon encoding transport and biosynthetic functions. Franza T; Expert D J Bacteriol; 1991 Nov; 173(21):6874-81. PubMed ID: 1657869 [TBL] [Abstract][Full Text] [Related]
18. Isolation and characterization of Erwinia chrysanthemi mutants defective in degradation of hexuronates. van Gijsegem F; Hugouvieux-Cotte-Pattat N; Robert-Baudouy J J Bacteriol; 1985 Feb; 161(2):702-8. PubMed ID: 3968035 [TBL] [Abstract][Full Text] [Related]
19. Erwinia chrysanthemi iron metabolism: the unexpected implication of the inner membrane platform within the type II secretion system. Douet V; Expert D; Barras F; Py B J Bacteriol; 2009 Feb; 191(3):795-804. PubMed ID: 18978048 [TBL] [Abstract][Full Text] [Related]
20. Siderophore-mediated upregulation of Arabidopsis ferritin expression in response to Erwinia chrysanthemi infection. Dellagi A; Rigault M; Segond D; Roux C; Kraepiel Y; Cellier F; Briat JF; Gaymard F; Expert D Plant J; 2005 Jul; 43(2):262-72. PubMed ID: 15998312 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]