These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29149547)

  • 1. Engineering Escherichia coli Co-Cultures for Production of Curcuminoids From Glucose.
    Fang Z; Jones JA; Zhou J; Koffas MAG
    Biotechnol J; 2018 May; 13(5):e1700576. PubMed ID: 29149547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of Curcuminoids in
    Kim EJ; Cha MN; Kim BG; Ahn JH
    J Microbiol Biotechnol; 2017 May; 27(5):975-982. PubMed ID: 28274102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo resveratrol production through modular engineering of an Escherichia coli-Saccharomyces cerevisiae co-culture.
    Yuan SF; Yi X; Johnston TG; Alper HS
    Microb Cell Fact; 2020 Jul; 19(1):143. PubMed ID: 32664999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of curcuminoids from tyrosine by a metabolically engineered Escherichia coli using caffeic acid as an intermediate.
    Rodrigues JL; Araújo RG; Prather KL; Kluskens LD; Rodrigues LR
    Biotechnol J; 2015 Apr; 10(4):599-609. PubMed ID: 25641677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of curcuminoids by Escherichia coli carrying an artificial biosynthesis pathway.
    Katsuyama Y; Matsuzawa M; Funa N; Horinouchi S
    Microbiology (Reading); 2008 Sep; 154(Pt 9):2620-2628. PubMed ID: 18757796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased Production of Dicinnamoylmethane Via Improving Cellular Malonyl-CoA Level by Using a CRISPRi in Escherichia coli.
    Chu LL; Pandey RP; Dhakal D; Sohng JK
    Appl Biochem Biotechnol; 2020 Jan; 190(1):325-340. PubMed ID: 31853874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo biosynthesis of complex natural product sakuranetin using modular co-culture engineering.
    Wang X; Li Z; Policarpio L; Koffas MAG; Zhang H
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4849-4861. PubMed ID: 32285175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precursor-directed biosynthesis of curcumin analogs in Escherichia coli.
    Katsuyama Y; Hirose Y; Funa N; Ohnishi Y; Horinouchi S
    Biosci Biotechnol Biochem; 2010; 74(3):641-5. PubMed ID: 20208337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Combinatorial Approach to Optimize the Production of Curcuminoids From Tyrosine in
    Rodrigues JL; Gomes D; Rodrigues LR
    Front Bioeng Biotechnol; 2020; 8():59. PubMed ID: 32117938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple HPLC-fluorescence method for quantitation of curcuminoids and its application to turmeric products.
    Zhang J; Jinnai S; Ikeda R; Wada M; Hayashida S; Nakashima K
    Anal Sci; 2009 Mar; 25(3):385-8. PubMed ID: 19276595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-culture engineering for microbial biosynthesis of 3-amino-benzoic acid in Escherichia coli.
    Zhang H; Stephanopoulos G
    Biotechnol J; 2016 Jul; 11(7):981-7. PubMed ID: 27168529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous production of curcuminoids.
    Rodrigues JL; Prather KL; Kluskens LD; Rodrigues LR
    Microbiol Mol Biol Rev; 2015 Mar; 79(1):39-60. PubMed ID: 25631288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of antioxidant, anticholinesterase, and antidiabetic activities of three curcuminoids isolated from Curcuma longa L.
    Kalaycıoğlu Z; Gazioğlu I; Erim FB
    Nat Prod Res; 2017 Dec; 31(24):2914-2917. PubMed ID: 28287280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of caffeoylmalic acid from glucose in engineered Escherichia coli.
    Li T; Zhou W; Bi H; Zhuang Y; Zhang T; Liu T
    Biotechnol Lett; 2018 Jul; 40(7):1057-1065. PubMed ID: 29845386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The differential cellular uptake of curcuminoids in vitro depends dominantly on albumin interaction.
    Itaya M; Miyazawa T; Zingg JM; Eitsuka T; Azzi A; Meydani M; Miyazawa T; Nakagawa K
    Phytomedicine; 2019 Jun; 59():152902. PubMed ID: 30981184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of curcuminoids by in vitro pure culture fermentation.
    Tan S; Rupasinghe TW; Tull DL; Boughton B; Oliver C; McSweeny C; Gras SL; Augustin MA
    J Agric Food Chem; 2014 Nov; 62(45):11005-15. PubMed ID: 25317751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promising anti-tumor properties of bisdemethoxycurcumin: A naturally occurring curcumin analogue.
    Ramezani M; Hatamipour M; Sahebkar A
    J Cell Physiol; 2018 Feb; 233(2):880-887. PubMed ID: 28075008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative Transformation of Demethoxy- and Bisdemethoxycurcumin: Products, Mechanism of Formation, and Poisoning of Human Topoisomerase IIα.
    Gordon ON; Luis PB; Ashley RE; Osheroff N; Schneider C
    Chem Res Toxicol; 2015 May; 28(5):989-96. PubMed ID: 25806475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering co-culture system for production of apigetrin in Escherichia coli.
    Thuan NH; Chaudhary AK; Van Cuong D; Cuong NX
    J Ind Microbiol Biotechnol; 2018 Mar; 45(3):175-185. PubMed ID: 29362971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Research progresses in the biosynthesis of curcuminoids].
    Wang L; Han X; Wang F; Sun L; Xin F
    Sheng Wu Gong Cheng Xue Bao; 2021 Feb; 37(2):404-417. PubMed ID: 33645144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.