BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 29149552)

  • 1. Predicting Nano-Bio Interactions by Integrating Nanoparticle Libraries and Quantitative Nanostructure Activity Relationship Modeling.
    Wang W; Sedykh A; Sun H; Zhao L; Russo DP; Zhou H; Yan B; Zhu H
    ACS Nano; 2017 Dec; 11(12):12641-12649. PubMed ID: 29149552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the Physicochemical Properties and Biological Activities of Monolayer-Protected Gold Nanoparticles Using Simulation-Derived Descriptors.
    Chew AK; Pedersen JA; Van Lehn RC
    ACS Nano; 2022 Apr; 16(4):6282-6292. PubMed ID: 35289596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring quantitative nanostructure-activity relationships (QNAR) modeling as a tool for predicting biological effects of manufactured nanoparticles.
    Fourches D; Pu D; Tropsha A
    Comb Chem High Throughput Screen; 2011 Mar; 14(3):217-25. PubMed ID: 21275889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico profiling nanoparticles: predictive nanomodeling using universal nanodescriptors and various machine learning approaches.
    Yan X; Sedykh A; Wang W; Zhao X; Yan B; Zhu H
    Nanoscale; 2019 Apr; 11(17):8352-8362. PubMed ID: 30984943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The gold standard: gold nanoparticle libraries to understand the nano-bio interface.
    Alkilany AM; Lohse SE; Murphy CJ
    Acc Chem Res; 2013 Mar; 46(3):650-61. PubMed ID: 22732239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic evaluation of nanomaterial toxicity: utility of standardized materials and rapid assays.
    Harper SL; Carriere JL; Miller JM; Hutchison JE; Maddux BL; Tanguay RL
    ACS Nano; 2011 Jun; 5(6):4688-97. PubMed ID: 21609003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scanning the potential energy surface for synthesis of dendrimer-wrapped gold clusters: design rules for true single-molecule nanostructures.
    Thompson D; Hermes JP; Quinn AJ; Mayor M
    ACS Nano; 2012 Apr; 6(4):3007-17. PubMed ID: 22432786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of peptide length on the conjugation to the gold nanoparticle surface: a molecular dynamic study.
    Ramezani F; Habibi M; Rafii-Tabar H; Amanlou M
    Daru; 2015 Jan; 23(1):9. PubMed ID: 25630230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of a web-based nanomaterial database by big data curation and modeling friendly nanostructure annotations.
    Yan X; Sedykh A; Wang W; Yan B; Zhu H
    Nat Commun; 2020 May; 11(1):2519. PubMed ID: 32433469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universal nanohydrophobicity predictions using virtual nanoparticle library.
    Wang W; Yan X; Zhao L; Russo DP; Wang S; Liu Y; Sedykh A; Zhao X; Yan B; Zhu H
    J Cheminform; 2019 Jan; 11(1):6. PubMed ID: 30659400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of surface properties on nanoparticle-cell interactions.
    Verma A; Stellacci F
    Small; 2010 Jan; 6(1):12-21. PubMed ID: 19844908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rational and iterative process for targeted nanoparticle design and validation.
    Rodriguez-Lorenzo L; Rafiee SD; Reis C; Milosevic A; Moore TL; Balog S; Rothen-Rutishauser B; Ruegg C; Petri-Fink A
    Colloids Surf B Biointerfaces; 2018 Nov; 171():579-589. PubMed ID: 30098536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental studies on the interactions between Au nanoparticles and amino acids: bio-based formation of branched linear chains.
    Sethi M; Knecht MR
    ACS Appl Mater Interfaces; 2009 Jun; 1(6):1270-8. PubMed ID: 20355923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological and environmental surface interactions of nanomaterials: characterization, modeling, and prediction.
    Chen R; Riviere JE
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 May; 9(3):. PubMed ID: 27863136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative nanostructure-activity relationship modeling.
    Fourches D; Pu D; Tassa C; Weissleder R; Shaw SY; Mumper RJ; Tropsha A
    ACS Nano; 2010 Oct; 4(10):5703-12. PubMed ID: 20857979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A further development of the QNAR model to predict the cellular uptake of nanoparticles by pancreatic cancer cells.
    Luan F; Tang L; Zhang L; Zhang S; Monteagudo MC; Cordeiro MNDS
    Food Chem Toxicol; 2018 Feb; 112():571-580. PubMed ID: 28412403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein adsorption on biomaterial and nanomaterial surfaces: a molecular modeling approach to study non-covalent interactions.
    Raffaini G; Ganazzoli F
    J Appl Biomater Biomech; 2010; 8(3):135-45. PubMed ID: 21337304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel and simple route to fabricate fully biocompatible plasmonic mushroom arrays adhered on silk biopolymer.
    Park J; Choi Y; Lee M; Jeon H; Kim S
    Nanoscale; 2015 Jan; 7(2):426-31. PubMed ID: 25407052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a nanomaterial bio-screening platform for neurological applications.
    Jenkins SI; Roach P; Chari DM
    Nanomedicine; 2015 Jan; 11(1):77-87. PubMed ID: 25101878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relating nanomaterial properties and microbial toxicity.
    Suresh AK; Pelletier DA; Doktycz MJ
    Nanoscale; 2013 Jan; 5(2):463-74. PubMed ID: 23203029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.