BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 29149589)

  • 1. Bond with Me If You Can! Natural Product, Covalent Ligand, and Reactivity-Based Probe Compete for Cysteine in PP2A Complex.
    Johnson DS; Majmudar JD
    Cell Chem Biol; 2017 Nov; 24(11):1317-1318. PubMed ID: 29149589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent Ligand Discovery against Druggable Hotspots Targeted by Anti-cancer Natural Products.
    Grossman EA; Ward CC; Spradlin JN; Bateman LA; Huffman TR; Miyamoto DK; Kleinman JI; Nomura DK
    Cell Chem Biol; 2017 Nov; 24(11):1368-1376.e4. PubMed ID: 28919038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemoproteomics-enabled covalent ligand screen reveals a cysteine hotspot in reticulon 4 that impairs ER morphology and cancer pathogenicity.
    Bateman LA; Nguyen TB; Roberts AM; Miyamoto DK; Ku WM; Huffman TR; Petri Y; Heslin MJ; Contreras CM; Skibola CF; Olzmann JA; Nomura DK
    Chem Commun (Camb); 2017 Jun; 53(53):7234-7237. PubMed ID: 28352901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diverse Redoxome Reactivity Profiles of Carbon Nucleophiles.
    Gupta V; Yang J; Liebler DC; Carroll KS
    J Am Chem Soc; 2017 Apr; 139(15):5588-5595. PubMed ID: 28355876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical Analysis and Prediction of Covalent Ligand Targeted Cysteine Residues.
    Zhang W; Pei J; Lai L
    J Chem Inf Model; 2017 Jun; 57(6):1453-1460. PubMed ID: 28510428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplexed Thiol Reactivity Profiling for Target Discovery of Electrophilic Natural Products.
    Tian C; Sun R; Liu K; Fu L; Liu X; Zhou W; Yang Y; Yang J
    Cell Chem Biol; 2017 Nov; 24(11):1416-1427.e5. PubMed ID: 28988947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methodology for Identification of Cysteine-Reactive Covalent Inhibitors.
    Kathman SG; Statsyuk AV
    Methods Mol Biol; 2019; 1967():245-262. PubMed ID: 31069775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemoproteomics-Enabled Covalent Ligand Screening Reveals a Thioredoxin-Caspase 3 Interaction Disruptor That Impairs Breast Cancer Pathogenicity.
    Anderson KE; To M; Olzmann JA; Nomura DK
    ACS Chem Biol; 2017 Oct; 12(10):2522-2528. PubMed ID: 28892616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A New Staple: Peptide-Targeted Covalent Inhibitors.
    Leverson JD
    Cell Chem Biol; 2016 Sep; 23(9):1043-1044. PubMed ID: 27662249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical proteomics approaches for identifying the cellular targets of natural products.
    Wright MH; Sieber SA
    Nat Prod Rep; 2016 May; 33(5):681-708. PubMed ID: 27098809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of non-peptidic cysteine reactive fragments as inhibitors of cysteine protease rhodesain.
    McShan D; Kathman S; Lowe B; Xu Z; Zhan J; Statsyuk A; Ogungbe IV
    Bioorg Med Chem Lett; 2015 Oct; 25(20):4509-12. PubMed ID: 26342866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational screening of peroxisome proliferator-activated receptor-γ agonists from natural products: potential therapeutics for heart failure.
    Chen R; Wan J; Song J; Qian Y; Liu Y; Gu S
    Pharm Biol; 2017 Dec; 55(1):503-509. PubMed ID: 27937122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand Exchange Reaction of Au(I) R-N-Heterocyclic Carbene Complexes with Cysteine.
    Dos Santos HF; Vieira MA; Sánchez Delgado GY; Paschoal D
    J Phys Chem A; 2016 Apr; 120(14):2250-9. PubMed ID: 27010796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent inhibitors: an opportunity for rational target selectivity.
    Lagoutte R; Patouret R; Winssinger N
    Curr Opin Chem Biol; 2017 Aug; 39():54-63. PubMed ID: 28609675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unleashing radical sites in non-covalent complexes: the case of the protonated S-nitrosocysteine/18-crown-6 complex.
    Osburn S; O'Hair RA
    Rapid Commun Mass Spectrom; 2013 Dec; 27(24):2783-8. PubMed ID: 24214864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of a 3D-shaped, natural product like fragment library by fragmentation and diversification of natural products.
    Prescher H; Koch G; Schuhmann T; Ertl P; Bussenault A; Glick M; Dix I; Petersen F; Lizos DE
    Bioorg Med Chem; 2017 Feb; 25(3):921-925. PubMed ID: 28011199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical Proteomic Characterization of a Covalent KRASG12C Inhibitor.
    Wijeratne A; Xiao J; Reutter C; Furness KW; Leon R; Zia-Ebrahimi M; Cavitt RN; Strelow JM; Van Horn RD; Peng SB; Barda DA; Engler TA; Chalmers MJ
    ACS Med Chem Lett; 2018 Jun; 9(6):557-562. PubMed ID: 29937982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring Natural Product Fragments for Drug and Probe Discovery.
    Pahl A; Waldmann H; Kumar K
    Chimia (Aarau); 2017 Oct; 71(10):653-660. PubMed ID: 29070410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ophiobolin A Covalently Targets Complex IV Leading to Mitochondrial Metabolic Collapse in Cancer Cells.
    Gowans FA; Thach DQ; Wang Y; Altamirano Poblano BE; Dovala D; Tallarico JA; McKenna JM; Schirle M; Maimone TJ; Nomura DK
    bioRxiv; 2023 Mar; ():. PubMed ID: 36945520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why do cysteine dioxygenase enzymes contain a 3-His ligand motif rather than a 2His/1Asp motif like most nonheme dioxygenases?
    de Visser SP; Straganz GD
    J Phys Chem A; 2009 Mar; 113(9):1835-46. PubMed ID: 19199799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.