These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

577 related articles for article (PubMed ID: 29149722)

  • 41. Fixation and detachment of superior and anterior malleolar ligaments in human middle ear: experiment and modeling.
    Dai C; Cheng T; Wood MW; Gan RZ
    Hear Res; 2007 Aug; 230(1-2):24-33. PubMed ID: 17517484
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nonlinear Vibration Response Measured at Umbo and Stapes in the Rabbit Middle ear.
    Peacock J; Pintelon R; Dirckx J
    J Assoc Res Otolaryngol; 2015 Oct; 16(5):569-80. PubMed ID: 26162416
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanics of type IV tympanoplasty: experimental findings and surgical implications.
    Merchant SN; Ravicz ME; Rosowski JJ
    Ann Otol Rhinol Laryngol; 1997 Jan; 106(1):49-60. PubMed ID: 9006362
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Human middle-ear sound transfer function and cochlear input impedance.
    Aibara R; Welsh JT; Puria S; Goode RL
    Hear Res; 2001 Feb; 152(1-2):100-9. PubMed ID: 11223285
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of draining cochlear fluids on stapes displacement in human middle-ear models.
    Lord RM; Abel EW; Wang Z; Mills RP
    J Acoust Soc Am; 2001 Dec; 110(6):3132-9. PubMed ID: 11785814
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Feasibility of Round Window Stimulation by a Novel Electromagnetic Microactuator.
    van Drunen WJ; Mueller M; Glukhovskoy A; Salcher R; Wurz MC; Lenarz T; Maier H
    Biomed Res Int; 2017; 2017():6369247. PubMed ID: 29214174
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A study on the effect of ligament and tendon detachment on human middle ear sound transfer using mathematic model.
    Xie P; Peng Y; Hu J; Yi S
    Proc Inst Mech Eng H; 2019 Aug; 233(8):784-792. PubMed ID: 31165672
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Coupling of an active middle-ear implant to the long process of the incus using an elastic clip attachment.
    Schraven SP; Mlynski R; Dalhoff E; Heyd A; Wildenstein D; Rak K; Radeloff A; Hagen R; Gummer AW
    Hear Res; 2016 Oct; 340():179-184. PubMed ID: 27037037
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of the middle ear anatomy on the performance of a membrane sensor in the incudostapedial joint gap.
    Koch M; Seidler H; Hellmuth A; Bornitz M; Lasurashvili N; Zahnert T
    Hear Res; 2013 Jul; 301():35-43. PubMed ID: 23246425
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Vibro-acoustic modelling of the outer and middle ear using the finite-element method.
    Prendergast PJ; Ferris P; Rice HJ; Blayney AW
    Audiol Neurootol; 1999; 4(3-4):185-91. PubMed ID: 10187928
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nonlinear stiffness characteristics of the annular ligament.
    Lauxmann M; Eiber A; Haag F; Ihrle S
    J Acoust Soc Am; 2014 Oct; 136(4):1756-67. PubMed ID: 25324078
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Frequency characteristics of sound transmission in middle ears from Norwegian cattle, and the effect of static pressure differences across the tympanic membrane and the footplate.
    Kringlebotn M
    J Acoust Soc Am; 2000 Mar; 107(3):1442-50. PubMed ID: 10738799
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optical coherence tomographic measurements of the sound-induced motion of the ossicular chain in chinchillas: Additional modes of ossicular motion enhance the mechanical response of the chinchilla middle ear at higher frequencies.
    Rosowski JJ; Ramier A; Cheng JT; Yun SH
    Hear Res; 2020 Oct; 396():108056. PubMed ID: 32836020
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optimal ossicular site for maximal vibration transmissions to coupled transducers.
    Chung J; Song WJ; Sim JH; Kim W; Oh SH
    Hear Res; 2013 Jul; 301():137-45. PubMed ID: 23337694
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ossicular motion related to middle ear transmission delay in gerbil.
    de La Rochefoucauld O; Kachroo P; Olson ES
    Hear Res; 2010 Dec; 270(1-2):158-72. PubMed ID: 20696229
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Equivalent noise level generated by drilling onto the ossicular chain as measured by laser Doppler vibrometry: a temporal bone study.
    Jiang D; Bibas A; Santuli C; Donnelly N; Jeronimidis G; O'Connor AF
    Laryngoscope; 2007 Jun; 117(6):1040-5. PubMed ID: 17545867
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Outer ear canal sound pressure and bone vibration measurement in SSD and CHL patients using a transcutaneous bone conduction instrument.
    Ghoncheh M; Lilli G; Lenarz T; Maier H
    Hear Res; 2016 Oct; 340():161-168. PubMed ID: 26723102
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Vibroplasty combined with tympanic membrane reconstruction in middle ear ventilation disorders.
    Müller C; Zahnert T; Ossmann S; Neudert M; Bornitz M
    Hear Res; 2019 Jul; 378():166-175. PubMed ID: 30878272
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Malleus-to-footplate versus malleus-to-stapes-head ossicular reconstruction prostheses: temporal bone pressure gain measurements and clinical audiological data.
    Murugasu E; Puria S; Roberson JB
    Otol Neurotol; 2005 Jul; 26(4):572-82. PubMed ID: 16015149
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An anatomically shaped incus prosthesis for reconstruction of the ossicular chain.
    Lord RM; Mills RP; Abel EW
    Hear Res; 2000 Jul; 145(1-2):141-8. PubMed ID: 10867286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.