These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 29149840)

  • 1. Geometric morphometrics reveals shifts in flower shape symmetry and size following gene knockdown of CYCLOIDEA and ANTHOCYANIDIN SYNTHASE.
    Berger BA; Ricigliano VA; Savriama Y; Lim A; Thompson V; Howarth DG
    BMC Plant Biol; 2017 Nov; 17(1):205. PubMed ID: 29149840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene duplication and relaxation from selective constraints of GCYC genes correlated with various floral symmetry patterns in Asiatic Gesneriaceae tribe Trichosporeae.
    Hsin KT; Lu JY; Möller M; Wang CN
    PLoS One; 2019; 14(1):e0210054. PubMed ID: 30699126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of CYCLOIDEA-like genes in Proteaceae, a basal eudicot family with multiple shifts in floral symmetry.
    Citerne HL; Reyes E; Le Guilloux M; Delannoy E; Simonnet F; Sauquet H; Weston PH; Nadot S; Damerval C
    Ann Bot; 2017 Feb; 119(3):367-378. PubMed ID: 28025288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying floral shape variation in 3D using microcomputed tomography: a case study of a hybrid line between actinomorphic and zygomorphic flowers.
    Wang CN; Hsu HC; Wang CC; Lee TK; Kuo YF
    Front Plant Sci; 2015; 6():724. PubMed ID: 26442038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of petal shape and floral zygomorphy in Lotus japonicus.
    Feng X; Zhao Z; Tian Z; Xu S; Luo Y; Cai Z; Wang Y; Yang J; Wang Z; Weng L; Chen J; Zheng L; Guo X; Luo J; Sato S; Tabata S; Ma W; Cao X; Hu X; Sun C; Luo D
    Proc Natl Acad Sci U S A; 2006 Mar; 103(13):4970-5. PubMed ID: 16549774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential regulation of symmetry genes and the evolution of floral morphologies.
    Hileman LC; Kramer EM; Baum DA
    Proc Natl Acad Sci U S A; 2003 Oct; 100(22):12814-9. PubMed ID: 14555758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gynodioecy in the common spindle tree (
    Neustupa J
    PeerJ; 2020; 8():e8571. PubMed ID: 32095372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virus-induced gene silencing of PEAM4 affects floral morphology by altering the expression pattern of PsSOC1a and PsPVP in pea.
    Chen ZH; Jia FF; Hu JQ; Pang JL; Xu L; Wang LL
    J Plant Physiol; 2014 Jan; 171(2):148-53. PubMed ID: 24331430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partial redundancy and functional specialization of E-class SEPALLATA genes in an early-diverging eudicot.
    Soza VL; Snelson CD; Hewett Hazelton KD; Di Stilio VS
    Dev Biol; 2016 Nov; 419(1):143-155. PubMed ID: 27502434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligulate inflorescence of Helianthus × multiflorus, cv. Soleil d'Or, correlates with a mis-regulation of a CYCLOIDEA gene characterised by insertion of a transposable element.
    Fambrini M; Bellanca M; Costa Muñoz M; Usai G; Cavallini A; Pugliesi C
    Plant Biol (Stuttg); 2018 Nov; 20(6):956-967. PubMed ID: 30022587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conservation and diversification of the symmetry developmental program among close relatives of snapdragon with divergent floral morphologies.
    Preston JC; Kost MA; Hileman LC
    New Phytol; 2009; 182(3):751-762. PubMed ID: 19291006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Step-by-Step Guide for Geometric Morphometrics of Floral Symmetry.
    Savriama Y
    Front Plant Sci; 2018; 9():1433. PubMed ID: 30364116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The CYCLOIDEA-RADIALIS module regulates petal shape and pigmentation, leading to bilateral corolla symmetry in Torenia fournieri (Linderniaceae).
    Su S; Xiao W; Guo W; Yao X; Xiao J; Ye Z; Wang N; Jiao K; Lei M; Peng Q; Hu X; Huang X; Luo D
    New Phytol; 2017 Sep; 215(4):1582-1593. PubMed ID: 28691160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flower symmetry and shape in Antirrhinum.
    Almeida J; Galego L
    Int J Dev Biol; 2005; 49(5-6):527-37. PubMed ID: 16096962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Floral zygomorphy, the recurring evolution of a successful trait.
    Cubas P
    Bioessays; 2004 Nov; 26(11):1175-84. PubMed ID: 15499590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversification of CYCLOIDEA expression in the evolution of bilateral flower symmetry in Caprifoliaceae and Lonicera (Dipsacales).
    Howarth DG; Martins T; Chimney E; Donoghue MJ
    Ann Bot; 2011 Jun; 107(9):1521-32. PubMed ID: 21478175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary diversification of CYC/TB1-like TCP homologs and their recruitment for the control of branching and floral morphology in Papaveraceae (basal eudicots).
    Zhao Y; Pfannebecker K; Dommes AB; Hidalgo O; Becker A; Elomaa P
    New Phytol; 2018 Oct; 220(1):317-331. PubMed ID: 29949661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elaboration of bilateral symmetry across Knautia macedonica capitula related to changes in ventral petal expression of CYCLOIDEA-like genes.
    Berger BA; Thompson V; Lim A; Ricigliano V; Howarth DG
    Evodevo; 2016; 7():8. PubMed ID: 27042288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional diversity of CYCLOIDEA-like TCP genes in the control of zygomorphic flower development in Lotus japonicus.
    Xu S; Luo Y; Cai Z; Cao X; Hu X; Yang J; Luo D
    J Integr Plant Biol; 2013 Mar; 55(3):221-31. PubMed ID: 23009172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cycloidea gene can respond to a common dorsoventral prepattern in Antirrhinum.
    Clark JI; Coen ES
    Plant J; 2002 Jun; 30(6):639-48. PubMed ID: 12061896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.