BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 29149996)

  • 1. Coupling of two centrifugeless ultrasound-assisted dispersive solid/liquid phase microextractions as a highly selective, clean, and efficient method for determination of ultra-trace amounts of non-steroidal anti-inflammatory drugs in complicated matrices.
    Arghavani-Beydokhti S; Rajabi M; Asghari A
    Anal Chim Acta; 2018 Jan; 997():67-79. PubMed ID: 29149996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient and clean pre-concentration of ultra-trace calcium channel blockers from biological matrices via a hyphenated procedure of two sequential dispersive solid/liquid phase microextractions.
    Hemmati M; Rajabi M; Asghari A
    Anal Chim Acta; 2017 Apr; 960():138-150. PubMed ID: 28193357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of magnetic dispersive micro solid-phase extraction and supramolecular solvent-based microextraction followed by high-performance liquid chromatography for determination of trace amounts of cholesterol-lowering drugs in complicated matrices.
    Arghavani-Beydokhti S; Rajabi M; Asghari A
    Anal Bioanal Chem; 2017 Jul; 409(18):4395-4407. PubMed ID: 28547184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nickel-iron layered double hydroxide nanostructures for micro solid phase extraction of nonsteroidal anti-inflammatory drugs, followed by quantitation by HPLC-UV.
    Seidi S; Sanàti SE
    Mikrochim Acta; 2019 Apr; 186(5):297. PubMed ID: 31016399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-situ synthesis of nanocubic cobalt oxide @ graphene oxide nanocomposite reinforced hollow fiber-solid phase microextraction for enrichment of non-steroidal anti-inflammatory drugs from human urine prior to their quantification via high-performance liquid chromatography-ultraviolet detection.
    Darvishnejad F; Raoof JB; Ghani M
    J Chromatogr A; 2021 Mar; 1641():461984. PubMed ID: 33611121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospun NiFe layered double hydroxide/Nylon 6 composite nanofibers as a sorbent for micro solid phase extraction by packed sorbent of non-steroidal anti-inflammatory drugs in human blood.
    Seidi S; Doroudian M
    J Chromatogr A; 2020 Mar; 1614():460718. PubMed ID: 31787265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green aspects, developments and perspectives of liquid phase microextraction techniques.
    Spietelun A; Marcinkowski Ł; de la Guardia M; Namieśnik J
    Talanta; 2014 Feb; 119():34-45. PubMed ID: 24401382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of ultrasound-enhanced air-assisted liquid-liquid microextraction and low-density solvent-based dispersive liquid-liquid microextraction methods for determination of nonsteroidal anti-inflammatory drugs in human urine samples.
    Barfi B; Asghari A; Rajabi M; Goochani Moghadam A; Mirkhani N; Ahmadi F
    J Pharm Biomed Anal; 2015; 111():297-305. PubMed ID: 25916913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of four acidic nonsteroidal anti-inflammatory drugs in wastewater samples by dispersive liquid-liquid microextraction based on solidification of floating organic droplet and high-performance liquid chromatography.
    Beldean-Galea MS; Coman V; Thiébaut D; Vial J
    J Sep Sci; 2015 Feb; 38(4):641-8. PubMed ID: 25487631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tandem air-agitated liquid-liquid microextraction as an efficient method for determination of acidic drugs in complicated matrices.
    Bazregar M; Rajabi M; Yamini Y; Asghari A; Hemmati M
    Anal Chim Acta; 2016 Apr; 917():44-52. PubMed ID: 27026599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dummy-surface molecularly imprinted polymers as a sorbent of micro-solid-phase extraction combined with dispersive liquid-liquid microextraction for determination of five 2-phenylpropionic acid NSAIDs in aquatic environmental samples.
    Guo P; Yuan X; Zhang J; Wang B; Sun X; Chen X; Zhao L
    Anal Bioanal Chem; 2018 Jan; 410(2):373-389. PubMed ID: 29124305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Centrifugeless dispersive liquid-liquid microextraction based on salting-out phenomenon as an efficient method for determination of phenolic compounds in environmental samples.
    Mirparizi E; Rajabi M; Bazregar M; Asghari A
    Anal Bioanal Chem; 2017 Apr; 409(11):3007-3016. PubMed ID: 28235997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of non-steroidal anti-inflammatory drugs in urine by hollow-fiber liquid membrane-protected solid-phase microextraction based on sol-gel fiber coating.
    Sarafraz-Yazdi A; Amiri A; Rounaghi G; Eshtiagh-Hosseini H
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Nov; 908():67-75. PubMed ID: 23122403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dispersive micro-solid phase extraction combined with switchable hydrophilicity solvent-based homogeneous liquid-liquid microextraction for enrichment of non-steroidal anti-inflammatory drugs in environmental water samples.
    Di X; Zhao X; Guo X
    J Chromatogr A; 2020 Dec; 1634():461677. PubMed ID: 33189962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Centrifugeless dispersive liquid-liquid microextraction based on salting-out phenomenon followed by high performance liquid chromatography for determination of Sudan dyes in different species.
    Bazregar M; Rajabi M; Yamini Y; Arghavani-Beydokhti S; Asghari A
    Food Chem; 2018 Apr; 244():1-6. PubMed ID: 29120756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tandem dispersive liquid-liquid microextraction as an efficient method for determination of basic drugs in complicated matrices.
    Bazregar M; Rajabi M; Yamini Y; Saffarzadeh Z; Asghari A
    J Chromatogr A; 2016 Jan; 1429():13-21. PubMed ID: 26711155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel extraction technique based on carbon nanotubes reinforced hollow fiber solid/liquid microextraction for the measurement of piroxicam and diclofenac combined with high performance liquid chromatography.
    Song XY; Shi YP; Chen J
    Talanta; 2012 Oct; 100():153-61. PubMed ID: 23141323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Centrifugeless ultrasound-assisted emulsification microextraction based on salting-out phenomenon followed by high-performance liquid chromatography for the simple determination of phthalate esters in aqueous samples.
    Mirparizi E; Rajabi M; Bazregar M; Asghari A
    J Sep Sci; 2017 May; 40(9):2022-2029. PubMed ID: 28317258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic sporopollenin-cyanopropyltriethoxysilane-dispersive micro-solid phase extraction coupled with high performance liquid chromatography for the determination of selected non-steroidal anti-inflammatory drugs in water samples.
    Abd Wahib SM; Wan Ibrahim WA; Sanagi MM; Kamboh MA; Abdul Keyon AS
    J Chromatogr A; 2018 Jan; 1532():50-57. PubMed ID: 29241956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination of dispersive solid phase extraction and deep eutectic solvent-based air-assisted liquid-liquid microextraction followed by gas chromatography-mass spectrometry as an efficient analytical method for the quantification of some tricyclic antidepressant drugs in biological fluids.
    Mohebbi A; Yaripour S; Farajzadeh MA; Afshar Mogaddam MR
    J Chromatogr A; 2018 Oct; 1571():84-93. PubMed ID: 30119972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.