BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 29150497)

  • 1. Low-Molecular-Weight Thiols and Thioredoxins Are Important Players in Hg(II) Resistance in Thermus thermophilus HB27.
    Norambuena J; Wang Y; Hanson T; Boyd JM; Barkay T
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29150497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An initial characterization of the mercury resistance (mer) system of the thermophilic bacterium Thermus thermophilus HB27.
    Wang Y; Freedman Z; Lu-Irving P; Kaletsky R; Barkay T
    FEMS Microbiol Ecol; 2009 Jan; 67(1):118-29. PubMed ID: 19120462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and regulation of the mer operon in Thermus thermophilus.
    Norambuena J; Miller M; Boyd JM; Barkay T
    Environ Microbiol; 2020 Apr; 22(4):1619-1634. PubMed ID: 32090420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superoxide Dismutase and Pseudocatalase Increase Tolerance to Hg(II) in Thermus thermophilus HB27 by Maintaining the Reduced Bacillithiol Pool.
    Norambuena J; Hanson TE; Barkay T; Boyd JM
    mBio; 2019 Apr; 10(2):. PubMed ID: 30940703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel arsenate reductase from the bacterium Thermus thermophilus HB27: its role in arsenic detoxification.
    Del Giudice I; Limauro D; Pedone E; Bartolucci S; Fiorentino G
    Biochim Biophys Acta; 2013 Oct; 1834(10):2071-9. PubMed ID: 23800470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mercury resistance operon: from an origin in a geothermal environment to an efficient detoxification machine.
    Boyd ES; Barkay T
    Front Microbiol; 2012; 3():349. PubMed ID: 23087676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological Studies of
    Hiras J; Sharma SV; Raman V; Tinson RAJ; Arbach M; Rodrigues DF; Norambuena J; Hamilton CJ; Hanson TE
    mBio; 2018 Nov; 9(6):. PubMed ID: 30482829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organomercurial Lyase (MerB)-Mediated Demethylation Decreases Bacterial Methylmercury Resistance in the Absence of Mercuric Reductase (MerA).
    Krout IN; Scrimale T; Vorojeikina D; Boyd ES; Rand MD
    Appl Environ Microbiol; 2022 Mar; 88(6):e0001022. PubMed ID: 35138926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial resistances to inorganic mercury salts and organomercurials.
    Misra TK
    Plasmid; 1992 Jan; 27(1):4-16. PubMed ID: 1311113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mercury Reduction and Methyl Mercury Degradation by the Soil Bacterium Xanthobacter autotrophicus Py2.
    Petrus AK; Rutner C; Liu S; Wang Y; Wiatrowski HA
    Appl Environ Microbiol; 2015 Nov; 81(22):7833-8. PubMed ID: 26341208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury resistance and mercuric reductase activities and expression among chemotrophic thermophilic Aquificae.
    Freedman Z; Zhu C; Barkay T
    Appl Environ Microbiol; 2012 Sep; 78(18):6568-75. PubMed ID: 22773655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury impairment of mouse thymocyte survival in vitro: involvement of cellular thiols.
    Mondal TK; Li D; Swami K; Dean JK; Hauer C; Lawrence DA
    J Toxicol Environ Health A; 2005 Apr; 68(7):535-56. PubMed ID: 15805047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of aqueous speciation and cellular ligand binding on the biotransformation and bioavailability of methylmercury in mercury-resistant bacteria.
    Ndu U; Barkay T; Schartup AT; Mason RP; Reinfelder JR
    Biodegradation; 2016 Feb; 27(1):29-36. PubMed ID: 26693726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon.
    Osborn AM; Bruce KD; Strike P; Ritchie DA
    FEMS Microbiol Rev; 1997 Apr; 19(4):239-62. PubMed ID: 9167257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Use of a Mercury Biosensor to Evaluate the Bioavailability of Mercury-Thiol Complexes and Mechanisms of Mercury Uptake in Bacteria.
    Ndu U; Barkay T; Mason RP; Traore Schartup A; Al-Farawati R; Liu J; Reinfelder JR
    PLoS One; 2015; 10(9):e0138333. PubMed ID: 26371471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expanded Diversity and Phylogeny of
    Christakis CA; Barkay T; Boyd ES
    Front Microbiol; 2021; 12():682605. PubMed ID: 34248899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailored bacteria tackling with environmental mercury: Inspired by natural mercuric detoxification operons.
    Hui CY; Ma BC; Hu SY; Wu C
    Environ Pollut; 2024 Jan; 341():123016. PubMed ID: 38008253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of the human thioredoxin system. A molecular mechanism of mercury toxicity.
    Carvalho CM; Chew EH; Hashemy SI; Lu J; Holmgren A
    J Biol Chem; 2008 May; 283(18):11913-23. PubMed ID: 18321861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular basis of bacterial resistance to organomercurial and inorganic mercuric salts.
    Walsh CT; Distefano MD; Moore MJ; Shewchuk LM; Verdine GL
    FASEB J; 1988 Feb; 2(2):124-30. PubMed ID: 3277886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo DNA-protein interactions at the divergent mercury resistance (mer) promoters. I. Metalloregulatory protein MerR mutants.
    Livrelli V; Lee IW; Summers AO
    J Biol Chem; 1993 Feb; 268(4):2623-31. PubMed ID: 8428939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.