These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Enhanced protopanaxadiol production from xylose by engineered Yarrowia lipolytica. Wu Y; Xu S; Gao X; Li M; Li D; Lu W Microb Cell Fact; 2019 May; 18(1):83. PubMed ID: 31103047 [TBL] [Abstract][Full Text] [Related]
7. Engineering oleaginous yeast Yarrowia lipolytica for enhanced limonene production from xylose and lignocellulosic hydrolysate. Yao F; Liu SC; Wang DN; Liu ZJ; Hua Q; Wei LJ FEMS Yeast Res; 2020 Sep; 20(6):. PubMed ID: 32840573 [TBL] [Abstract][Full Text] [Related]
8. Engineering nonphosphorylative metabolism to synthesize mesaconate from lignocellulosic sugars in Escherichia coli. Bai W; Tai YS; Wang J; Wang J; Jambunathan P; Fox KJ; Zhang K Metab Eng; 2016 Nov; 38():285-292. PubMed ID: 27697562 [TBL] [Abstract][Full Text] [Related]
9. Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose. Ledesma-Amaro R; Lazar Z; Rakicka M; Guo Z; Fouchard F; Coq AC; Nicaud JM Metab Eng; 2016 Nov; 38():115-124. PubMed ID: 27396355 [TBL] [Abstract][Full Text] [Related]
11. [Progress in research of pentose transporters and C6/C5 co-metabolic strains in Saccharomyces cerevisiae]. Wang C; Li H; Xu L; Shen Y; Hou J; Bao X Sheng Wu Gong Cheng Xue Bao; 2018 Oct; 34(10):1543-1555. PubMed ID: 30394022 [TBL] [Abstract][Full Text] [Related]
12. Engineering Yarrowia lipolytica to produce fuels and chemicals from xylose: A review. Sun T; Yu Y; Wang K; Ledesma-Amaro R; Ji XJ Bioresour Technol; 2021 Oct; 337():125484. PubMed ID: 34320765 [TBL] [Abstract][Full Text] [Related]
13. Purification and characterization of xylitol dehydrogenase with l-arabitol dehydrogenase activity from the newly isolated pentose-fermenting yeast Meyerozyma caribbica 5XY2. Sukpipat W; Komeda H; Prasertsan P; Asano Y J Biosci Bioeng; 2017 Jan; 123(1):20-27. PubMed ID: 27506274 [TBL] [Abstract][Full Text] [Related]
14. Metabolic Engineering for Improved Fermentation of L-Arabinose. Ye S; Kim JW; Kim SR J Microbiol Biotechnol; 2019 Mar; 29(3):339-346. PubMed ID: 30786700 [TBL] [Abstract][Full Text] [Related]
15. Metabolic engineering for improved fermentation of pentoses by yeasts. Jeffries TW; Jin YS Appl Microbiol Biotechnol; 2004 Feb; 63(5):495-509. PubMed ID: 14595523 [TBL] [Abstract][Full Text] [Related]
16. Functional Analysis of Two l-Arabinose Transporters from Filamentous Fungi Reveals Promising Characteristics for Improved Pentose Utilization in Saccharomyces cerevisiae. Li J; Xu J; Cai P; Wang B; Ma Y; Benz JP; Tian C Appl Environ Microbiol; 2015 Jun; 81(12):4062-70. PubMed ID: 25841015 [TBL] [Abstract][Full Text] [Related]
17. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. Ruchala J; Sibirny AA FEMS Microbiol Rev; 2021 Aug; 45(4):. PubMed ID: 33316044 [TBL] [Abstract][Full Text] [Related]
18. Enabling xylose utilization in Yarrowia lipolytica for lipid production. Li H; Alper HS Biotechnol J; 2016 Sep; 11(9):1230-40. PubMed ID: 27367454 [TBL] [Abstract][Full Text] [Related]
19. Bioconversion of pentose sugars to value added chemicals and fuels: Recent trends, challenges and possibilities. Kumar V; Binod P; Sindhu R; Gnansounou E; Ahluwalia V Bioresour Technol; 2018 Dec; 269():443-451. PubMed ID: 30217725 [TBL] [Abstract][Full Text] [Related]
20. Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose. Xiao H; Gu Y; Ning Y; Yang Y; Mitchell WJ; Jiang W; Yang S Appl Environ Microbiol; 2011 Nov; 77(22):7886-95. PubMed ID: 21926197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]